Page 204 - Demo
P. 204


                                    202Chapter12attentionmapsorclass-activationmapsderived fromdeep-learningmodelscouldalsogiveadegreeoraquantification ThereforetheidealfuturemethodconsistsofadeeplearningmethodwithcomprehensivefeaturesThisprovidesarobustmethodthatcanbeusedforbothclassificationandquantificationofcranialdeformationsFigure2AdditionalgearswillenablethecompletegearsystemthatrepresentstheclinicalworkflowtoworkmoreefficientNEWDEVELOPMENTSINACQUIRING3DPHOTOSAboveallmaking3DphotogrammetrymoreaccessibleathomeoratotherclinicalsiteswillbeamassiveimprovementAllourstudiesbenefitedfromanexcellentbutratherexpensive3DMDcranialphotosystemas wellas frompropertrainedphotographersandtechnicalmedicinestudentswhoarealwayswillingtomake3DphotosUnfortunatelytheseadvantagesarenotalwaysandeverywhereavailableNewdevelopmentssuchasthefullyautomatedsmartphone-based3Dcapturingsystemthatusesaskincapwithmarkerscouldsolvethisproblem67Othermethodsthatuse2Dphotosfromdifferentanglesandamachine-learningapproacharealsopromising8Ifa3Dphotocanbecheapandeasilyacquiredinsufficientqualityforourclassificationandanalysistoolswecoulddiagnosepatientsearlierandmakefollow-upmoreconvenient
                                
   198   199   200   201   202   203   204   205   206   207   208