Page 157 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 157

20(2):94–106.
103. Laskar S, Pandit P, Mallik S et al. Adaptive radiation therapy for pediatric head and neck
malignancies: Dosimetric implications. Pract. Radiat. Oncol. 2015; 5(2):e87–e94.
104. Beltran C, Sharma S, Merchant TE. Role of adaptive radiation therapy for pediatric patients
with diffuse pontine glioma. J. Appl. Clin. Med. Phys. 2011; 12(2):3421.
105. Beltran C, Naik M, Merchant TE. Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother. Oncol. 2010; 97(3):399–
403.
106. Guerreiro F, Janssens GORJ, Seravalli E, Raaymakers BW. Abdominal Diameter Changes in
Children During Volumetric Modulated Arc Therapy (VMAT): Is Re‐Planning Needed? J. Appl.
Clin. Med. Phys., 2016; 43(6):3420–3420.
107. Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH et al. First patients treated with a 1.5 T MRI-
Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy
treatment. Phys. Med. Biol. 2017; 62(23):L41–L50.
108. Merchant TE. Clinical Controversies: Proton Therapy for Pediatric Tumors. Semin. Radiat.
Oncol. 2013; 23(2):97–108.
109. Mizumoto M, Murayama S, Akimoto T et al. Long-term follow-up after proton beam therapy
for pediatric tumors: a Japanese national survey. Cancer Sci. 2017; 108(3):444–447.
110. Hess CB, Indelicato DJ, Paulino AC et al. An Update From the Pediatric Proton Consortium
Registry. Front. Oncol. 2018; 8(May):1–10.
111. Combs SE, Kessel KA, Herfarth K et al. Treatment of pediatric patients and young adults with
particle therapy at the Heidelberg Ion Therapy Center (HIT): establishment of workflow and
initial clinical data. Radiat. Oncol. 2012; 7(1):170.
112. Combs SE, Ellerbrock M, Haberer T et al. Heidelberg Ion Therapy Center (HIT): Initial clinical
experience in the first 80 patients. Acta Oncol. (Madr). 2010; 49(7):1132–1140.
113. Ebner DK, Kamada T. The Emerging Role of Carbon-Ion Radiotherapy. Front. Oncol. 2016.
doi:10.3389/fonc.2016.00140.
114. Timmermann B. Proton Beam Therapy for Childhood Malignancies: Status Report. Klin.
Pädiatrie 2010; 222(03):127–133.
115. Buchsbaum JC. Pediatric proton therapy in 2015: Indications , applications and considerations.
Appl Rad Onc 2015.
116. Hattangadi JA, Rombi B, Yock TI et al. Proton Radiotherapy for High-Risk Pediatric
Neuroblastoma: Early Outcomes and Dose Comparison. Int. J. Radiat. Oncol. 2012;
83(3):1015–1022.
117. Ladra MM, Edgington SK, Mahajan A et al. A dosimetric comparison of proton and intensity
modulated radiation therapy in pediatric rhabdomyosarcoma patients enrolled on a
prospective phase II proton study. Radiother. Oncol. 2014; 113(1):77–83.
118. Vogel J, Lin H, Both S et al. Pencil beam scanning proton therapy for treatment of the retroperitoneum after nephrectomy for Wilms tumor: A dosimetric comparison study.
Pediatr. Blood Cancer 2017; 64(1):39–45.
119. Hoppe BS, Flampouri S, Zaiden R et al. Involved-node proton therapy in combined modality
therapy for hodgkin lymphoma: Results of a phase 2 study. Int. J. Radiat. Oncol. Biol. Phys.
2014; 89(5):1053–1059.
120. Weber DC, Murray FR, Correia D et al. Pencil beam scanned protons for the treatment of
patients with Ewing sarcoma. Pediatr. Blood Cancer 2017; 64(12):1–8.
121. Houweling AC, Fukata K, Kubota Y et al. The impact of interfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients. Radiother. Oncol.
2016; 119(2):319–325.
122. Liu W, Zhang X, Li Y, Mohan R. Robust optimization of intensity modulated proton therapy.
Med. Phys. 2012; 39(2):1079–1091.
123. Unkelbach J, Paganetti H. Robust Proton Treatment Planning: Physical and Biological
154


















































   155   156   157   158   159