Page 156 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 156
82. Pai Panandiker AS, Winchell A, Rolen M et al. 4DMRI Provides More Accurate Renal Motion Estimation for IMRT in Young Children. Int. J. Radiat. Oncol. 2013; 87(2):S599.
83. Johnstone E, Wyatt JJ, Henry AM et al. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging–Only Radiation Therapy. Int. J. Radiat. Oncol. 2018; 100(1):199–217.
84. Guerreiro F. Abstracts from MR in RT 2018: Feasibility of MRI-only photon and proton dose calculations for abdominal pediatric patients. 2018.
85. Boria AJ, Uh J, Pirlepesov F et al. Interplay Effect of Target Motion and Pencil-Beam Scanning in Proton Therapy for Pediatric Patients. Int. J. Part. Ther. 2018; In press:IJPT-17-00030.1.
86. Uh J, Krasin MJ, Hua C. Technical Note: Feasibility of MRI-based estimation of water- equivalent path length to detect changes in proton range during treatment courses. Med. Phys. 2018; 45(4):1677–1683.
87. Lagendijk JJW, Raaymakers BW, van Vulpen M. The Magnetic Resonance Imaging–Linac System. Semin. Radiat. Oncol. 2014; 24(3):207–209.
88. Mutic S, Dempsey JF. The ViewRay System: Magnetic Resonance–Guided and Controlled Radiotherapy. Semin. Radiat. Oncol. 2014; 24(3):196–199.
89. Chen MJ, Leao CR, Carioca AL et al. Kidney-sparing whole abdominal irradiation in Wilms Tumor: potential advantages of VMAT technique. Radiother. Oncol. 2018; 217:S439–S440.
90. Davila-Fajardo R, Seravalli E, Ruebe C et al. Improved Target Coverage While Simultaneous- Integrated-Sparing of Kidney and Liver by VMAT in Children Undergoing Whole-Abdomen Irradiation for Wilms Tumour. Pediatr. Blood Cancer 2016; 63:S89.
91. Nazmy MS, Khafaga Y. Clinical experience in pediatric neuroblastoma intensity modulated radiotherapy. J. Egypt. Natl. Canc. Inst. 2012; 24(4):185–189.
92. Beneyton V, Niederst C, Vigneron C et al. Comparison of the dosimetries of 3-dimensions Radiotherapy (3D-RT) with linear accelerator and intensity modulated radiotherapy (IMRT) with helical tomotherapy in children irradiated for neuroblastoma. BMC Med. Phys. 2012; 12(1):2.
93. Fuji H, Schneider U, Ishida Y et al. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas. Radiat. Oncol. 2013; 8(1):255.
94. Paulino AC, Ferenci MS, Chiang K-Y et al. Comparison of conventional to intensity modulated radiation therapy for abdominal neuroblastoma. Pediatr. Blood Cancer 2006; 46(7):739–744.
95. Ding GX, Coffey CW. Radiation Dose From Kilovoltage Cone Beam Computed Tomography in an Image-Guided Radiotherapy Procedure. Int. J. Radiat. Oncol. 2009; 73(2):610–617.
96. Deng J, Chen Z, Roberts KB, Nath R. Kilovoltage imaging doses in the radiotherapy of pediatric cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2012. doi:10.1016/j.ijrobp.2011.01.062.
97. Hess CB, Thompson HM, Benedict SH et al. Exposure Risks among Children Undergoing
Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy. Int. J.
Radiat. Oncol. Biol. Phys. 2016; 94(5):978–992.
98. Lim-Reinders S, Keller BM, Al-Ward S et al. Online Adaptive Radiation Therapy. Int. J. Radiat.
Oncol. 2017; 99(4):994–1003.
99. Nijkamp J, Pos FJ, Nuver TT et al. Adaptive Radiotherapy for Prostate Cancer Using Kilovoltage
Cone-Beam Computed Tomography: First Clinical Results. Int. J. Radiat. Oncol. Biol. Phys.
2008. doi:10.1016/j.ijrobp.2007.05.046.
100. Lutkenhaus LJ, Visser J, de Jong R et al. Evaluation of delivered dose for a clinical daily
adaptive plan selection strategy for bladder cancer radiotherapy. Radiother. Oncol. 2015;
116(1):51–56.
101. Lutkenhaus LJ, de Jong R, Geijsen ED et al. Potential dosimetric benefit of an adaptive plan
selection strategy for short-course radiotherapy in rectal cancer patients. Radiother. Oncol.
2016; 119(3):525–530.
102. Sonke J-J, Belderbos J. Adaptive Radiotherapy for Lung Cancer. Semin. Radiat. Oncol. 2010;
153