Page 155 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 155

1098.
62. Lens E, van der Horst A, Versteijne E et al. Considerable pancreatic tumor motion during
breath-holding. Acta Oncol. (Madr). 2016; 55(11):1360–1368.
63. Latty D, Stuart KE, Wang W, Ahern V. Review of deep inspiration breath-hold techniques for
the treatment of breast cancer. J. Med. Radiat. Sci. 2015; 62(1):74–81.
64. Claude L, Malet C, Pommier P et al. Active Breathing Control for Hodgkin’s Disease in Childhood and Adolescence: Feasibility, Advantages, and Limits. Int. J. Radiat. Oncol. Biol.
Phys. 2007; 67(5):1470–1475.
65. Demoor-Goldschmidt C, Chiavassa S, Josset S et al. Asservissement respiratoire lors d’une
radiothérapie pulmonaire bilatérale pour le sarcome d’Ewing ou le néphroblastome chez des enfants et jeunes adultes: études dosimétrique et clinique de faisabilité. Cancer/Radiotherapie 2017; 21(2):124–129.
66. Lundgaard AY, Hjalgrim LL, Rechner LA et al. TEDDI: Radiotherapy delivery in deep inspiration for pediatric patients - A NOPHO feasibility study. Radiat. Oncol. 2018; 13(1):11–13.
67. Lens E, Van Der Horst A, Versteijne E et al. Dosimetric advantages of midventilation compared with internal target volume for radiation therapy of pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015; 92(3):675–682.
68. Wolthaus JWH, Schneider C, Sonke JJ et al. Mid-ventilation CT scan construction from four- dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2006; 65(5):1560–1571.
69. Pai Panandiker AS, Beltran C, Gray J, Hua C. Methods for image guided and intensity modulated radiation therapy in high-risk abdominal neuroblastoma. Pract. Radiat. Oncol. 2013; 3(2):107–114.
70. Lavan N CE, Burland H, Ockwell C, Saran FH MH. Abstracts From the 48th Congress of the International Society of Paediatric Oncology (SIOP) Dublin, Ireland. Pediatr. Blood Cancer 2016; 63(Suppl 3):S5-321.
71. Lavan N, Smyth G, McQuaid D et al. Four-dimensional computed tomography-derived internal target volumes reduce volume of norml tissue in the high region in intensity modulated radiotherapy planning for high risk neuroblastoma. Pediatr. Blood Cancer 2016; 63:S91.
72. De Jong R, Lens E, Van Herk M et al. Optimizing cone-beam CT presets for children to reduce imaging dose illustrated with craniospinal axis. Radiother. Oncol. 2014; 111:S109–S110.
73. Atkinson B, Whitfield G, van Herk M. Design of an optimised bow-tie filter for cone-beam CT
image guidance for children. Phys. Medica 2018; 52(1):11.
74. Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy.
Phys. Medica 2015; 31(7):647–658.
75. Rit S, van Herk M, Zijp L, Sonke J-J. Quantification of the Variability of Diaphragm Motion and
Implications for Treatment Margin Construction. Int. J. Radiat. Oncol. 2012; 82(3):e399–e407.
76. Sonke J-J, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. Med. Phys.
2005; 32(4):1176–1186.
77. Qi Z, Chen G-H. Performance studies of four-dimensional cone beam computed tomography.
Phys. Med. Biol. 2011; 56(20):6709–6721.
78. Christoffersen CPV, Hansen D, Poulsen P, Sorensen TS. Registration-based reconstruction of
four-dimensional cone beam computed tomography. IEEE Trans. Med. Imaging 2013.
doi:10.1109/TMI.2013.2272882.
79. Hansen DC, Sørensen TS. Fast 4D cone-beam CT from 60 s acquisitions. Phys. Imaging Radiat.
Oncol. 2018; 5:69–75.
80. Gurney-Champion OJ, Versteijne E, van der Horst A et al. Addition of MRI for CT-based
pancreatic tumor delineation: a feasibility study. Acta Oncol. (Madr). 2017; 56(7):923–930.
81. van de Schoot AJAJ, de Boer P, Buist MR et al. Quantification of delineation errors of the gross tumor volume on magnetic resonance imaging in uterine cervical cancer using pathology data
and deformation correction. Acta Oncol. (Madr). 2015; 54(2):224–231. 152
































































   153   154   155   156   157