Page 158 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 158
Optimization. Semin. Radiat. Oncol. 2018; 28(2):88–96.
124. Chang JY, Zhang X, Knopf A et al. Consensus Guidelines for Implementing Pencil‐Beam
Scanning Proton Therapy for Thoracic Malignancies on Behalf of the PTCOG Thoracic and
Lymphoma Subcommittee. Int. J. Radiat. Oncol. Biol. Phys. 2017; 99(1):41–50.
125. Tashiro M, Ishii T, Koya JI et al. Technical approach to individualized respiratory‐gated carbon‐
ion therapy for mobile organs. Radiol. Phys. Technol. 2013; 6(2):356–366.
126. Minohara S, Kanai T, Endo M et al. Respiratory gated irradiation system for heavy‐ion
radiotherapy. Int. J. Radiat. Oncol. 2000; 47(4):1097–1103.
127. Depauw N, Dias MF, Rosenfeld A, Seco J. Ion radiography as a tool for patient set‐up and
image guided particle therapy: a Monte Carlo study. Technol. Cancer Res. Treat. 2014;
13(1):69–76.
128. Crijns SPM, Raaymakers BW, Lagendijk JJW. Real‐time correction of magnetic field
inhomogeneity‐induced image distortions for MRI‐guided conventional and proton
radiotherapy. Phys. Med. Biol. 2011; 56(1):289–297.
129. Hartman J, Kontaxis C, Bol GH et al. Dosimetric feasibility of intensity modulated proton
therapy in a transverse magnetic field of 1.5 T. Phys. Med. Biol. 2015; 60(15):5955–5969.
130. Raaymakers BW, Raaijmakers AJE, Lagendijk JJW. Feasibility of MRI guided proton therapy:
magnetic field dose effects. Phys. Med. Biol. 2008; 53(20):5615–22.
131. Moteabbed M, Schuemann J, Paganetti H. Dosimetric feasibility of real‐time MRI‐guided
proton therapy. Med. Phys. 2014; 41(11):111713.
155