Page 36 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 36

Chapter 1
(38) Oliveira, B. L., Guo, Z., and Bernardes, G. J. L., Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46 (16), 4895-950.
(39) Tamura, T., and Hamachi, I., Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J. Am. Chem. Soc. 2019, 141 (7), 2782-99.
(40) Stephanopoulos, N., and Francis, M. B., Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 2011, 7 (12), 876-84.
(41) Chari, R. V., Miller, M. L., and Widdison, W. C., Antibody-drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl. 2014, 53 (15), 3796-827.
(42) Biju, V., Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43 (3), 744-64.
(43) Pasut, G., and Veronese, F. M., State of the art in PEGylation: The great versatility achieved after forty years of research. J. Controlled Release 2012, 161 (2), 461-72.
(44) Kairdolf, B. A., Qian, X., and Nie, S., Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Anal. Chem. 2017, 89 (2), 1015-31.
(45) Koniev, O., and Wagner, A., Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 2015, 44 (15), 5495-551.
(46) Tamura, T., and Hamachi, I., Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J. Am. Chem. Soc. 2019, 141 (7), 2782-99.
(47) Spicer, C. D., Pashuck, E. T., and Stevens, M. M., Achieving Controlled Biomolecule- Biomaterial Conjugation. Chem. Rev. 2018, 118 (16), 7702-43.
(48) Matos, M. J., Oliveira, B. L., Martinez-Saez, N., Guerreiro, A., Cal, P. M. S. D., Bertoldo, J., Maneiro, M., Perkins, E., Howard, J., Deery, M. J., et al., Chemo- and Regioselective Lysine Modification on Native Proteins. J. Am. Chem. Soc. 2018, 140 (11), 4004-17.
(49) Grünewald, J., Klock, H. E., Cellitti, S. E., Bursulaya, B., McMullan, D., Jones, D. H., Chiu, H.- P., Wang, X., Patterson, P., Zhou, H., et al., Efficient Preparation of Site-Specific Antibody Drug Conjugates Using Phosphopantetheinyl Transferases. Bioconjugate Chem. 2015, 26 (12), 2554-62.
(50) Sevier, C. S., and Kaiser, C. A., Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 2002, 3 (11), 836-47.
(51) Chalker, J. M., Bernardes, G. J. L., Lin, Y. A., and Davis, B. G., Chemical Modification of Proteins at Cysteine: Opportunities in Chemistry and Biology. Chem. - Asian J. 2009, 4 (5), 630-40.
(52) Ishii, Y., and Lehrer, S. S., Effects of the State of the Succinimido-Ring on the Fluorescence and Structural-Properties of Pyrene Maleimide-Labeled Alpha-Alpha-Tropomyosin. Biophys. J. 1986, 50 (1), 75-80.
(53) Ponte, J. F., Sun, X., Yoder, N. C., Fishkin, N., Laleau, R., Coccia, J., Lanieri, L., Bogalhas, M., Wang, L., Wilhelm, S., et al., Understanding How the Stability of the Thiol-Maleimide Linkage Impacts the Pharmacokinetics of Lysine-Linked Antibody-Maytansinoid Conjugates. Bioconjugate Chem. 2016, 27 (7), 1588-98.
(54) Nunes, J. P. M., Morais, M., Vassileva, V., Robinson, E., Rajkumar, V. S., Smith, M. E. B., Pedley, R. B., Caddick, S., Baker, J. R., and Chudasama, V., Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem. Commun. 2015, 51 (53), 10624-7.
34
















































































   34   35   36   37   38