Page 38 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 38

Chapter 1
Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels-Alder Reactions.
J. Am. Chem. Soc. 2012, 134 (25), 10317-20.
(71) Zhang, Y., Park, K. Y., Suazo, K. F., and Distefano, M. D., Recent progress in enzymatic
protein labelling techniques and their applications. Chem. Soc. Rev. 2018, 47 (24), 9106-36.
(72) Milczek, E. M., Commercial Applications for Enzyme-Mediated Protein Conjugation: New
Developments in Enzymatic Processes to Deliver Functionalized Proteins on the
Commercial Scale. Chem. Rev. 2018, 118 (1), 119-41.
(73) Mao, H., Hart, S. A., Schink, A., and Pollok, B. A., Sortase-mediated protein ligation: a new
method for protein engineering. J. Am. Chem. Soc. 2004, 126 (9), 2670-1.
(74) Sarpong, K., and Bose, R., Efficient sortase-mediated N-terminal labeling of TEV protease
cleaved recombinant proteins. Anal. Biochem. 2017, 521, 55-8.
(75) Guimaraes, C. P., Witte, M. D., Theile, C. S., Bozkurt, G., Kundrat, L., Blom, A. E., and
Ploegh, H. L., Site-specific C-terminal and internal loop labeling of proteins using sortase-
mediated reactions. Nat. Protoc. 2013, 8 (9), 1787-99.
(76) Popp, M. W., and Ploegh, H. L., Making and Breaking Peptide Bonds: Protein Engineering
Using Sortase. Angew. Chem. Int. Edit. 2011, 50 (22), 5024-32.
(77) Wagner, K., Kwakkenbos, M. J., Claassen, Y. B., Maijoor, K., Bohne, M., van der Sluijs, K. F.,
Witte, M. D., van Zoelen, D. J., Cornelissen, L. A., Beaumont, T., et al., Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (47), 16820-5.
(78) Bartels, L., de Jong, G., Gillissen, M. A., Yasuda, E., Kattler, V., Bru, C., Fatmawati, C., van Hal-van Veen, S. E., Cercel, M. G., Moiset, G., et al., A chemo-enzymatically linked bispecific antibody retargets T cells to a sialylated epitope on CD43 in acute myeloid leukemia. Cancer Res. 2019.
(79) Bartels, L., Ploegh, H. L., Spits, H., and Wagner, K., Preparation of bispecific antibody- protein adducts by site-specific chemo-enzymatic conjugation. Methods 2019, 154, 93- 101.
(80) Schumacher, D., Helma, J., Mann, F. A., Pichler, G., Natale, F., Krause, E., Cardoso, M. C., Hackenberger, C. P. R., and Leonhardt, H., Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew. Chem. Int. Ed. 2015, 54 (46), 13787-91.
(81) Schumacher, D., Lemke, O., Helma, J., Gerszonowicz, L., Waller, V., Stoschek, T., Durkin, P. M., Budisa, N., Leonhardt, H., Keller, B. G., et al., Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling. Chem. Sci. 2017, 8 (5), 3471-8.
(82) Solomon, E. I., Sundaram, U. M., and Machonkin, T. E., Multicopper oxidases and oxygenases. Chem. Rev. 1996, 96 (7), 2563-605.
(83) Jaenicke, E., and Decker, H., Tyrosinases from crustaceans form hexamers. Biochem. J. 2003, 371, 515-23.
(84) Fenoll, L. G., Rodríguez-López, J. N., Varón, R., García-Ruiz, P. A., García-Cánovas, F., and Tudela, J., Kinetic characterisation of the reaction mechanism of mushroom tyrosinase on tyramine/dopamine and L-tyrosine methyl esther/L-dopa methyl esther. Int. J. Biochem. Cell Biol. 2002, 34 (12), 1594-607.
(85) Simon, J. D., and Peles, D. N., The Red and the Black. Acc. Chem. Res. 2010, 43 (11), 1452- 60.
(86) D'Mello, S. A. N., Finlay, G. J., Baguley, B. C., and Askarian-Amiri, M. E., Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17 (7).
36






































































   36   37   38   39   40