Page 35 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 35

(19) Andreev, J., Thambi, N., Bay, A. E. P., Delfino, F., Martin, J., Kelly, M. P., Kirshner, J. R., Rafique, A., Kunz, A., Nittoli, T., et al., Bispecific Antibodies and Antibody-Drug Conjugates (ADCs) Bridging HER2 and Prolactin Receptor Improve Efficacy of HER2 ADCs. Mol. Cancer Ther. 2017, 16 (4), 681-93.
(20) de Goeij, B. E. C. G., Vink, T., ten Napel, H., Breij, E. C. W., Satijn, D., Wubbolts, R., Miao, D., and Parren, P. W. H. I., Efficient Payload Delivery by a Bispecific Antibody-Drug Conjugate Targeting HER2 and CD63. Mol. Cancer Ther. 2016, 15 (11), 2688-97.
(21) Dahlén, E., Veitonmäki, N., and Norlén, P., Bispecific antibodies in cancer immunotherapy. Ther. Adv. Vaccines Immunother. 2018, 6 (1), 3-17.
(22) Yu, L., and Wang, J., T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J. Cancer Res. Clin. Oncol. 2019, 145 (4), 941-56.
(23) Bruins, J. J., van de Wouw, C., Wagner, K., Bartels, L., Albada, B., and van Delft, F. L., Highly Efficient Mono-Functionalization of Knob-in-Hole Antibodies with Strain-Promoted Click Chemistry. ACS Omega 2019, 4 (7), 11801-7.
(24) Klein, C., Schaefer, W., and Regula, J. T., The use of CrossMAb technology for the generation of bi- and multispecific antibodies. mAbs 2016, 8 (6), 1010-20.
(25) Tran Cao, H. S., Kaushal, S., Metildi, C. A., Menen, R. S., Lee, C., Snyder, C. S., Messer, K., Pu, M., Luiken, G. A., Talamini, M. A., et al., Tumor-specific fluorescence antibody imaging enables accurate staging laparoscopy in an orthotopic model of pancreatic cancer. Hepatogastroenterology 2012, 59 (118), 1994-9.
(26) Luo, S., Zhang, E., Su, Y., Cheng, T., and Shi, C., A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32 (29), 7127-38.
(27) Wu, A. M., and Olafsen, T., Antibodies for molecular imaging of cancer. Cancer J. 2008, 14 (3), 191-7.
(28) Mishiro, K., Hanaoka, H., Yamaguchi, A., and Ogawa, K., Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord. Chem. Rev. 2019, 383, 104-31.
(29) Chari, R. V., Miller, M. L., and Widdison, W. C., Antibody-drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. 2014, 53 (15), 3796-827.
(30) Maruani, A., Bispecifics and antibody-drug conjugates: A positive synergy. Drug. Discov. Today: Technol. 2018, 30, 55-61.
(31) McCombs, J. R., and Owen, S. C., Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry. Aaps J. 2015, 17 (2), 339-51.
(32) Jain, N., Smith, S. W., Ghone, S., and Tomczuk, B., Current ADC Linker Chemistry. Pharm. Res. 2015, 32 (11), 3526-40.
(33) Bargh, J. D., Isidro-Llobet, A., Parker, J. S., and Spring, D. R., Cleavable linkers in antibody- drug conjugates. Chem. Soc. Rev. 2019, 48, 4361-74.
(34) Versteegen, R. M., Rossin, R., ten Hoeve, W., Janssen, H. M., and Robillard, M. S., Click to Release: Instantaneous Doxorubicin Elimination upon Tetrazine Ligation. Angew. Chem. Int. Edit. 2013, 52 (52), 14112-6.
(35) Junutula, J. R., Raab, H., Clark, S., Bhakta, S., Leipold, D. D., Weir, S., Chen, Y., Simpson, M., Tsai, S. P., Dennis, M. S., et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26 (8), 925-32.
(36) Kalia, J., and Raines, R. T., Advances in Bioconjugation. Curr. Org. Chem. 2010, 14 (2), 138- 47.
(37) Boutureira, O., and Bernardes, G. J. L., Advances in Chemical Protein Modification. Chem. Rev. 2015, 115 (5), 2174-95.
General Introduction
 33
1













































































   33   34   35   36   37