Page 34 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 34

Chapter 1
1.6. References
(1) Parham, P., The immune system. 3rd ed.; Garland Science: London and New York, 2009.
(2) Woof, J. M., and Burton, D. R., Human antibody - Fc receptor interactions illuminated by
crystal structures. Nat. Rev. Immunol. 2004, 4 (2), 89-99.
(3) Jefferis, R., Isotype and glycoform selection for antibody therapeutics. Arch. Biochem.
Biophys. 2012, 526 (2), 159-66.
(4) Lipman, N. S., Jackson, L. R., Trudel, L. J., and Weis-Garcia, F., Monoclonal versus polyclonal
antibodies: Distinguishing characteristics, applications, and information resources. Ilar J.
2005, 46 (3), 258-68.
(5) Liu, H., Chumsae, C., Gaza-Bulseco, G., Hurkmans, K., and Radziejewski, C. H., Ranking the
susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential
alkylation, and LC-MS analysis. Anal. Chem. 2010, 82 (12), 5219-26.
(6) Jefferis, R., Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev.
Drug Discovery 2009, 8 (3), 226-34.
(7) Shields, R. L., Lai, J., Keck, R., O'Connell, L. Y., Hong, K., Meng, Y. G., Weikert, S. H. A., and
Presta, L. G., Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fc gamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 2002, 277 (30), 26733-40.
(8) Boyd, P. N., Lines, A. C., and Patel, A. K., The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 1995, 32 (17-18), 1311-8.
(9) Harris, L. J., Larson, S. B., Hasel, K. W., and McPherson, A., Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 1997, 36 (7), 1581-97.
(10) van Geel, R., Wijdeven, M. A., Heesbeen, R., Verkade, J. M. M., Wasiel, A. A., van Berkel, S. S., and van Delft, F. L., Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates. Bioconjugate Chem. 2015, 26 (11), 2233-42.
(11) Varki, A., Cummings, R. D., Aebi, M., Packer, N. H., Seeberger, P. H., Esko, J. D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., et al., Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology 2015, 25 (12), 1323-4.
(12) Beck, A., Wagner-Rousset, E., Ayoub, D., Van Dorsselaer, A., and Sanglier-Cianferani, S., Characterization of Therapeutic Antibodies and Related Products. Anal. Chem. 2013, 85 (2), 715-36.
(13) Johansson, B. P., Shannon, O., and Björck, L., IdeS: A Bacterial Proteolytic Enzyme with Therapeutic Potential. PLoS One 2008, 3 (2), e1692.
(14) Holliger, P., and Hudson, P. J., Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23 (9), 1126-36.
(15) Kontermann, R. E., and Brinkmann, U., Bispecific antibodies. Drug Discovery Today 2015, 20 (7), 838-47.
(16) Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B. M., and Hamid, M., scFv Antibody: Principles and Clinical Application. Clin. Dev. Immunol. 2012.
(17) Brinkmann, U., and Kontermann, R. E., The making of bispecific antibodies. mAbs 2017, 9 (2), 182-212.
(18) Kipriyanov, S. M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., Von der Lieth, C. W., Matys, E. R., and Little, M., Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 1999, 293 (1), 41-56.
32






































































   32   33   34   35   36