Page 107 - Demo
P. 107
The correlation between tibial slope and dynamic knee kinematics1055displayed less dynamic ATT during SLHD than subjects with lower ATT on instrumented Lachman. Electromyography (EMG) obtained during the SLHD landing showed no clear relation between muscle activity patterns and dynamic ATT, yet less knee flexion was shown by subjects with lax knees. Keizer et al. concluded that landing kinematics may be more relevant than muscle activation in controlling dynamic ATT. Chmielewski et al. found landing kinematics comparable to Keizer et al., i.e. less knee flexion, in subjects with acute ACL injury.5 In our study these landing kinematics were not seen; no significant difference was observed in maximum knee flexion or knee extension between ACL-intact and ACL-deficient knees. Several compensation techniques may be successful in reducing dynamic ATT, such as altering landing kinematics or altering muscle activation patterns. A subject’s (biomechanical or anatomical) profile may result in preference for a compensation technique, but most likely it is a complex interplay of many factors. A 3D model fed with material properties, geometrical data, and experimental data (kinematics and EMG data) during dynamic tasks may provide more insight into possible compensation techniques to reduce dynamic ATT. Factors such as self-efficacy, psychological readiness, and subjective knee function may also play an important role. As shown in our earlier work (Chapter 4) psychological readiness and subjective knee function are related to dynamic rTR in ACL deficiency and after ACL reconstruction. This study is the first to explore a correlation between PTS and dynamic rTR. As with dynamic ATT, little (if any) to weak correlations between dynamic rTR and PTS were observed in ACL deficiency. More specifically, little (if any) to weak correlations were found between dynamic rTR and ΔPTS in ACL deficiency. In acute ACL injury, similarly to the mechanism involved in reducing ATT, diminished hamstring muscle activity has shown to be related to decreased internal rotation of the tibia in ACL-reconstructed subjects.1 This emphasizes the possibility of the hamstrings influencing rTR, and in doing so, counteracting the influence of PTS on rTR in acute ACL deficiency. However, one year after ACL reconstruction we have observed moderate-to-strong correlations between rTR and PTS. This may indicate that the previously hypothesized compensation mechanisms fail Mark Zee.indd 105 03-01-2024 08:56