Page 49 - Development of Functional Scaffolds for Bone Tissue Engineering Using 3D-Bioprinting of Cells and Biomaterials - Yasaman Zamani
P. 49
REFERENCES
1. Gómez-Barrena E, Padilla-Eguiluz NG, Avendaño-Solá C, Payares-Herrera C, Velasco-Iglesias A, Torres F, Rosset P, Gebhard F, Baldini N, Rubio-Suarez JC. A multicentric, open-label, randomized, comparative clinical trial of two different doses of expanded hBM-MSCs plus biomaterial versus iliac crest autograft, for bone healing in nonunions after long bone fractures: study protocol. Stem Cells Int 2018;2018:6025918.
2. Shirani G, Abbasi AJ, Mohebbi SZ, Moharrami M. Comparison between autogenous iliac bone and freeze-dried bone allograft for repair of alveolar clefts in the presence of plasma rich in growth factors: A randomized clinical trial. J Cranio Maxill Surg 2017;45:1698-1703.
3. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 2017;78:1246-1262.
4. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015;9:4-18.
5. Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering
scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014;3:61.
6. Yu NY, Schindeler A, Little DG, Ruys AJ. Biodegradable poly (α‐hydroxy acid) polymer scaffolds for
bone tissue engineering. J Biomed Mater Res B 2010;93:285-295.
7. Felfel R, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant
DM, Liefeith K. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds
generated by two-photon polymerization. Biomed Mater 2016;11:015011.
8. Qu X, Xia P, He J, Li D. Microscale electrohydrodynamic printing of biomimetic PCL/nHA composite
scaffolds for bone tissue engineering. Mater Lett 2016;185:554-557.
9. Park J, Lee SJ, Jo HH, Lee JH, Kim WD, Lee JY, Su A. Fabrication and characterization of 3D-printed
bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J Ind Eng
Chem 2017;46:175-181.
10. Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, Kim BH. Addition of MgO nanoparticles and
plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for
improving bone regeneration. Mater Sci Eng C 2017;74:525-535.
11. Lin CH, Chang MC, Hung SC, Lee SY, Lin YM. Bioactive surface modification of polycaprolactone using
MG63-conditioned medium can induce osteogenic differentiation of mesenchymal stem cells. J Mater
Sci 2017;52:3967-3978.
12. Chen CH, Lee MY, Shyu VBH, Chen YC, Chen CT, Chen JP. Surface modification of polycaprolactone
scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Mater Sci Eng C
2014;40:389-397.
13. Li J, Chen M, Wei X, Hao Y, Wang J. Evaluation of 3D-printed polycaprolactone scaffolds coated with
freeze-dried platelet-rich plasma for bone regeneration. Materials 2017;10:831-847.
47