Page 51 - Development of Functional Scaffolds for Bone Tissue Engineering Using 3D-Bioprinting of Cells and Biomaterials - Yasaman Zamani
P. 51

28. Zhang H, Hollister S. Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J Biomater Sci Polym Ed 2009;20:1975-1993.
29. Held P. Fluorimetric quantification of protein using the reactive compound fluorescamine. Nature Methods Application Notes. doi:10.1038/an1794.
30. Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 1979;11:447-455.
31. Sharma K, Bullock A, Ralston D, MacNeil S. Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute. Burns 2014;40:957-965.
32. Kroeze RJ, Knippenberg M, Helder MN. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells. Methods Mol Biol 2011;702:233-248.
33. Reich A, Bae AS, Barnes AM, Cabral WA, Hinek A, Stimec J, Hill SC, Chitayat D, Marini JC. Type V OI primary osteoblasts display increased mineralization despite decreased COL1A1 expression. J Clin Endocrinol Metab 2015;100:E325-E332.
34. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta 2007;1767:1073-1101.
35. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects
in tissue engineering of cartilage and bone. Biomater Res 2016;20:10.
36. Abedalwafa M, Wang F, Wang L, Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue
engineering applications: a review. Rev Adv Mater Sci 2013;34:123-140.
37. Oyane A, Uchida M, Choong C, Triffitt J, Jones J, Ito A. Simple surface modification of poly (ɛ-
caprolactone) for apatite deposition from simulated body fluid. Biomaterials 2005;26:2407-2413.
38. Shahmoradi S, Yazdian F, Tabandeh F, Soheili ZS, Zarami ASH, Navaei-Nigjeh M. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells.
Mater Sci Eng C 2017;73:300-309.
39. Salehi-Nik N, Amoabediny G, Shokrgozar MA, Mottaghy K, Klein-Nulend J, Zandieh-Doulabi B. Surface
modification of silicone tubes by functional carboxyl and amine, but not peroxide groups followed by collagen immobilization improves endothelial cell stability and functionality. Biomed Mater 2015;10:015024.
40. Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH. Evaluation of poycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 2009;90:906-919.
41. Lam CX, Savalani MM, Teoh SH, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 2008, 3:034108.
42. Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27:1735-1740.
49














































































   49   50   51   52   53