Page 158 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 158
CHAPTER 7
7.5 References
1 R. L. Mauck, B. M. Baker, N. L. Nerurkar, et al., Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration., Tissue Eng. Part B. Rev., 2009, 15, 171–93.
2 A. Balguid, A. Mol, M. H. van Marion, et al., Tailoring Fiber Diameter in Electrospun Poly(ε-Caprolactone) Sca olds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering, Tissue Eng. Part A, 2009, 15, 437–444.
3 E. S. Fioretta, M. Simonet, A. I. P. M. Smits, et al., Di erential Response of Endothelial and Endothelial Colony Forming Cells on Electrospun Sca olds with Distinct Microfiber Diameters, Biomacromolecules, 2014, 15, 821–829.
4 B. Sun, Y.-Z. Long, F. Yu, et al., Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning, Nanoscale, 2012, 4, 2134.
5 D. Ahirwal, A. Hébraud, R. Kádár, et al., From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams, So Matter, 2013, 9, 3164.
6 K. W. Kim, K. H. Lee, M. S. Khil, et al., The e ect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens, Fibers Polym., 2004, 5, 122–127.
13 X. Ye, H. Wang, J. Zhou, et al., The e ect of Heparin-VEGF multilayer on the biocompatibility of decellularized aortic valve with platelet and endothelial progenitor cells., PLoS One, 2013, 8, e54622.
14 J. Henry, K. Burugapalli, P. Neuenschwander, et al., Structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture, Acta Biomater., 2009, 5, 29–42.
15 O. D. Schneider, F. Weber, T. J. Brunner, et al., In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects, Acta Biomater., 2009, 5, 1775–1784.
16 J. Ma, J. Meng, M. Simonet, et al., Biodegradable fibre sca olds incorporating water-soluble drugs and proteins, J. Mater. Sci. Mater. Med., 2015, 26, 205.
17 S. V Murphy and A. Atala, 3D bioprinting of tissues and organs, Nat. Biotechnol., 2014, 32, 773–785.
18 D. G. Nguyen, J. Funk, J. B. Robbins, et al., Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro, PLoS One, 2016, 11, e0158674.
19 D. Annis, A. Bornat, R. O. Edwards, et al., An elastomeric vascular prosthesis., Trans. Am. Soc. Artif. Intern. Organs, 1978, 24, 209–
7 T. Krishnamoorthy, V. Thavasi, V. Akshara, et al., Direct Deposition 14.
of Micron-Thick Aligned Ceramic TiO2 Nanofibrous Film on FTOs by Double-Needle Electrospinning Using Air-Turbulence Shielded Disc Col, J. Nanomater., 2011, 2011, 1–7.
8 US Patent 8,282,911, 2012.
9 J. Buschmann, L. Härter, S. Gao, et al., Tissue engineered bone gra s based on biomimetic nanocomposite PLGA/amorphous calcium phosphate sca old and human adipose-derived stem cells, Injury, 2012, 43, 1689–1697.
10 O. D. Schneider, D. Mohn, R. Fuhrer, et al., Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep, Open Orthop. J., 2011, 5.
11 R. Poincloux, F. Lizárraga and P. Chavrier, Matrix invasion by tumour cells: a focus on MT1-MMP tra icking to invadopodia., J. Cell Sci., 2009, 122, 3015–24.
12 D. W. Youngstrom, J. G. Barrett, R. R. Jose, et al., Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications., PLoS One, 2013, 8, e64151.
20 A. C. Fisher, T. V How, L. de Cossart, et al., The longer term patency of a compliant small diameter arterial prosthesis: the e ect of the withdrawing of aspirin and dipyridamole therapy: the e ect of reduced compliance., Trans. Am. Soc. Artif. Intern. Organs, 1985, 31, 324–8.
21 J. Kluin and C. V. C. Bouten, In situ heart valve tissue engineering using a bioresorbable eleastomeric implant – From material desing to 12 months follow-up in sheep, Biomaterials, 2017, 125, 101-117.
22 M. P. E. Wenger, L. Bozec, M. A. Horton, et al., Mechanical properties of collagen fibrils., Biophys. J., 2007, 93, 1255–63.
23 P. Dutov, O. Antipova, S. Varma, et al., Measurement of Elastic Modulus of Collagen Type I Single Fiber, PLoS One, 2016, 11, e0145711.
24 N. D. Evans and E. Gentleman, The role of material structure and mechanical properties in cell–matrix interactions, J. Mater. Chem. B, 2014, 2, 2345.
156