Page 118 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 118
CHAPTER 5
93 A. Balguid, A. Mol, M. H. van Marion, et al., Tailoring Fiber Diameter in Electrospun Poly(ε-Caprolactone) Sca olds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering, Tissue Eng. Part A, 2009, 15, 437–444.
94 A. Mol, M. I. Van Lieshout, C. G. Dam-De Veen, et al., Fibrin as a cell carrier in cardiovascular tissue engineering applications, Biomaterials, 2005, 26, 3113–3121.
95 Q. P. Pham, U. Sharma and A. G. Mikos, Electrospun poly(e- caprolactone) microfiber and multilayer nanofiber/microfiber sca olds: Characterization of sca olds and measurement of cellular infiltration, Biomacromolecules, 2006, 7, 2796–2805.
96 A. Holzmeister, M. Rudisile, A. Greiner, et al., Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning, Eur. Polym. J., 2007, 43, 4859–4867.
97 J. Nam, Y. Huang, S. Agarwal, et al., Improved cellular infiltration in electrospun fiber via engineered porosity., Tissue Eng., 2007, 13, 2249–57.
104 J. T. McCann, M. Marquez and Y. Xia, Highly porous fibers by electrospinning into a cryogenic liquid, J. Am. Chem. Soc., 2006, 128, 1436–1437.
105 W. H. You, Young Lee, Seung Jin Min, Byung M. Park, E ect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid), J. Appl. Polym. Sci., 2006, 99, 1214– 1221.
106 C. Xu, F. Yang, S. Wang, et al., J.Biomed.Mater.Res.A., 2004, 71, 154–161.
107 S. M. Rea, R. A. Brooks, A. Schneider, et al., Osteoblast-like cell response to bioactive composites - Surface-topography and composition e ects, J. Biomed. Mater. Res. Part B Appl. Biomater., 2004, 70B, 250–261.
108 G. J. Bakeine, J. Ban, G. Grenci, et al., Design, fabrication and evaluation of nanoscale surface topography as a tool in directing di erentiation and organisation of embryonic stem-cell-derived neural precursors, Microelectron. Eng., 2009, 86, 1435–1438.
109 M. D. Guillemette, B. Cui, E. Roy, et al., Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function, Integr. Biol., 2009, 1, 196–
98 M. Simonet, O. D. Schneider, P. Neuenschwander, et
al., Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template,
Polym. Eng. Sci., 2007, 47, 2020–2026. 204.
99 J. Henry, K. Burugapalli, P. Neuenschwander, et al., Structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture, Acta Biomater., 2009, 5, 29–42.
100 M. F. Leong, M. Z. Rasheed, T. C. Lim, et al., In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) sca old fabricated by cryogenic electrospinning technique, J. Biomed. Mater. Res. - Part A, 2009, 91, 231–240.
101 S. Ramakrishna, F. K. Z, T. WE, et al., An Introduction to Electrospinning And Nanofibers, World Scientific Publishing Co. PTe. Ltd., Singapore, 2005.
102 M. Bognitzki, W. Czado, T. Frese, et al., Nanostructured fibers via electrospinning, Adv. Mater., 2001, 13, 70–72.
103 S. Megelski, J. S. Stephens, D. Bruce Chase, et al., Micro- and nanostructured surface morphology on electrospun polymer fibers, Macromolecules, 2002, 35, 8456–8466.
110 C. L. Casper, N. Yamaguchi, K. L. Kiick, et al., Functionalizing electrospun fibers with biologically relevant macromolecules, Biomacromolecules, 2005, 6, 1998–2007.
111 Z. Ma, M. Kotaki, T. Yong, et al., Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering, Biomaterials, 2005, 26, 2527–2536.
112 J.XieandY.-L.Hsieh,Ultra-highsurfacefibrousmembranesfrom electrospinning of natural proteins: casein and lipase enzyme, J. Mater. Sci., 2003, 38, 2125–2133.
113 J. Gunn and M. Zhang, Polyblend nanofibers for biomedical applications: perspectives and challenges., Trends Biotechnol., 2010, 28, 189–97.
116