Page 117 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 117
62 M. I. van Lieshout, C. M. Vaz, M. C. M. Rutten, et al., Electrospinning versus knitting: two sca olds for tissue engineering of the aortic valve., J. Biomater. Sci. Polym. Ed., 2006, 17, 77–89.
63 C. Del Gaudio, A. Bianco and M. Grigioni, Electrospun bioresorbable trileaflet heart valve prosthesis for tissue engineering: in vitro functional assessment of a pulmonary cardiac valve design., Ann. Ist. Super. Sanita, 2008, 44, 178–86.
64 M. P. Rubbens, A. Mol, R. a Boerboom, et al., Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue., Tissue Eng. Part A, 2009, 15, 999–1008.
65 E. H. Stephens, N. de Jonge, M. P. McNeill, et al., Age-Related Changes in Material Behavior of Porcine Mitral and Aortic Valves and Correlation to Matrix Composition, Tissue Eng. Part A, 2010, 16, 867–878.
66 G. E. Davis and D. R. Senger, Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization, Circ. Res., 2005, 97, 1093–1107.
67 G. Chan and D. J. Mooney, New materials for tissue engineering: towards greater control over the biological response, Trends Biotechnol., 2008, 26, 382–392.
68 M. a C. Stuart, W. T. S. Huck, J. Genzer, et al., Emerging applications of stimuli-responsive polymer materials., Nat. Mater., 2010, 9, 101–113.
69 B. K. Mann, A. S. Gobin, A. T. Tsai, et al., Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering, Biomaterials, 2001, 22, 3045–3051.
70 J. A. Hubbell, Materials as morphogenetic guides in tissue engineering, Curr. Opin. Biotechnol., 2003, 14, 551–558.
71 R. T. Tranquillo, M. A. Durrani and A. G. Moon, Tissue Engineering Science - Consequences of Cell Traction Force, Cytotechnology, 1992, 10, 225–250.
72 S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, et al.,
Electrospun degradable polyesterurethane membranes: potential sca olds for skeletal muscle tissue engineering, Biomaterials, 2005, 26, 4606–4615.
73 M. M. Stevens and J. H. George, Exploring and Engineering the Cell Surface Interface, Science, 2005, 310, 1135–1138.
74 R. Dersch, L. Taiqi, A. K. Schaper, et al., Electrospun nanofibers: Internal structure and intrinsic orientation, J. Polym. Sci. Part A Polym. Chem., 2003, 41, 545–553.
75 D. Li, Y. Wang, Y. Xia, et al., Adv. Mater., 2004, 16, 361–366.
76 A. Theron, E. Zussman and A. L. Yarin, Nanotechnology, 2001, 12,
384–390.
77 P. K. Baumgarten, Electrostatic spinning of acrylic microfibers, J. Colloid Interface Sci., 1971, 36, 71–79.
78 J. M. Deitzel, J. Kleinmeyer, D. Harris, et al., The e ect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 2001, 42, 261–272.
79 M. . Demir, I. Yilgor, E. Yilgor, et al., Electrospinning of polyurethane fibers, Polymer, 2002, 43, 3303–3309.
80 T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, et al., E ect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, Eur. Polym. J., 2005, 41, 409–421.
81 X. Zong, K. Kim, D. Fang, et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, 2002, 43, 4403–4412.
82 J. S. Choi, S. W. Lee, L. Jeong, et al., E ect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate- co-3-hydroxyvalerate), Int. J. Biol. Macromol., 2004, 34, 249–256.
83 K. H. Lee, H. Y. Kim, M. S. Khil, et al., Characterization of nano-structured poly(e-caprolactone) nonwoven mats via electrospinning, Polymer, 2003, 44, 1287–1294.
84 C. M. Hsu and S. Shivkumar, N,N-Dimethylformamide Additions to the Solution for the Electrospinning of Poly(ε-caprolactone) Nanofibers, Macromol. Mater. Eng., 2004, 289, 334–340.
85 W. K. Son, J. H. Youk, T. S. Lee, et al., The e ects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers, Polymer, 2004, 45, 2959–2966.
86 C. J. Buchko, L. C. Chen, Y. Shen, et al., Processing and 5 microstructural characterization of porous biocompatible protein
polymer thin films, Polymer, 1999, 40, 7397–7407.
87 J. S. Lee, K. H. Choi, H. Do Ghim, et al., Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning, J. Appl. Polym. Sci., 2004, 93, 1638–1646.
88 S. L. Zhao, X. H. Wu, L. G. Wang, et al., Electrospinning of ethyl- cyanoethyl cellulose/tetrahydrofuran solutions, J. Appl. Polym. Sci., 2004, 91, 242–246.
89 R. Gentsch, B. Boysen, A. Lankenau, et al., Single-Step Electrospinning of Bimodal Fiber Meshes for Ease of Cellular Infiltration, Macromol. Rapid Commun., 2010, 31, 59–64.
90 S. Soliman, S. Pagliari, A. Rinaldi, et al., Multiscale three- dimensional sca olds for so tissue engineering via multimodal electrospinning, Acta Biomater., 2010, 6, 1227–1237.
91 J. Lannutti, D. Reneker, T. Ma, et al., Electrospinning for tissue engineering sca olds, Mater. Sci. Eng. C, 2007, 27, 504–509.
92 S. J. Eichhorn and W. W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies., J. R. Soc. Interface, 2005, 2, 309–318.
ELECTROSPINNING FOR HEART VALVE TISSUE REGENERATION
115