Page 116 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 116
CHAPTER 5
30 J. A. Schroeder, L. F. Jackson, D. C. Lee, et al., Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling, J. Mol. Med., 2003, 81, 392–403.
31 F. J. Schoen, Evolving Concepts of Cardiac Valve Dynamics The Continuum of Development, Functional Structure, Pathobiology, and Tissue Engineering, Circulation, 2008, 118, 1864–1880.
32 J. T. Butcher and R. R. Markwald, Valvulogenesis: the moving target, Philos. Trans. R. Soc. B-Biological Sci., 2007, 362, 1489– 1503.
33 R. B. Hinton, J. Lincoln, G. H. Deutsch, et al., Extracellular matrix remodeling and organization in developing and diseased aortic valves, Circ. Res., 2006, 98, 1431–1438.
34 F. Baaijens, C. Bouten and N. Driessen, Modeling collagen remodeling., J. Biomech., 2010, 43, 166–75.
35 A. Katsumi, A. W. Orr, E. Tzima, et al., Integrins in mechanotransduction, J. Biol. Chem., 2004, 279, 12001–12004.
36 K. K. Parker and D. E. Ingber, Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering, Philos. Trans. R. Soc. B-Biological Sci., 2007, 362, 1267–1279.
37 K. S. Kolahi and M. R. K. Mofrad, Mechanotransduction: a major regulator of homeostasis and development, Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, 2, 625–639.
38 J. J. Tomasek, G. Gabbiani, B. Hinz, et al., Myofibroblasts and mechano-regulation of connective tissue remodelling, Nat. Rev. Mol. Cell Biol., 2002, 3, 349–363.
39 M. Chiquet, L. Gelman, R. Lutz, et al., From mechanotransduction to extracellular matrix gene expression in fibroblasts, Biochim. Biophys. Acta-Molecular Cell Res., 2009, 1793, 911–920.
40 E. Ruoslahti and M. D. Pierschbacher, New Perspectives in Cell- Adhesion - Rgd and Integrins, Science, 1987, 238, 491–497.
41 B. D. Plou e, D. N. Njoka, J. Harris, et al., Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow, Langmuir, 2007, 23, 5050–5055.
42 G. Maheshwari, G. Brown, D. A. Lau enburger, et al., Cell adhesion and motility depend on nanoscale RGD clustering, J. Cell Sci., 2000, 113, 1677–1686.
43 J. Shi, N. Dong and Z. Sun, Immobilization of decellularized valve sca olds with Arg-Gly-Asp-containing peptide to promote myofibroblast adhesion., J. Huazhong Univ. Sci. Technolog. Med. Sci., 2009, 29, 503–7.
44 A. J. Engler, S. Sen, H. L. Sweeney, et al., Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, 2006, 126, 677–689.
45 S. Nemir and J. L. West, Synthetic Materials in the Study of Cell Response to Substrate Rigidity, Ann. Biomed. Eng., 2010, 38, 2–20.
46
47 48
49 50 51 52 53 54 55 56 57 58 59 60 61
A. M. Kloxin, J. A. Benton and K. S. Anseth, In situ elasticity modulation with dynamic substrates to direct cell phenotype., Biomaterials, 2010, 31, 1–8.
J. A. Matthews, G. E. Wnek, D. G. Simpson, et al., Biomacromolecules, 2002, 3, 232–238.
L. Buttafoco, N. G. Kolkman, P. Engbers-Buijtenhuijs, et al.,
Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials, 2006, 27, 724–734.
L. So er, X. Wang, X. Zhang, et al., Silk-based electrospun tubular sca olds for tissue-engineered vascular gra s, J. Biomater. Sci. Polym. Ed., 2008, 19, 653–664.
M. C. McManus, E. D. Boland, D. G. Simpson, et al., Electrospun fibrinogen: Feasibility as a tissue engineering sca old in a rat cell culture model, J. Biomed. Mater. Res. Part A, 2007, 81A, 299–309.
Y. Zhang, H. Ouyang, C. T. Lim, et al., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous sca olds, J. Biomed. Mater. Res., 2005, 72B, 156–165.
D. I. Zeugolis, S. T. Khew, E. S. Y. Yew, et al., Electro-spinning of pure collagen nano-fibres - Just an expensive way to make gelatin?, Biomaterials, 2008, 29, 2293–2305.
E. Piskin, N. Bolgen, S. Egri, et al., Electrospun matrices made of poly(a-hydroxy acids) for medical use, Nanomedicine, 2007, 2, 441–457.
B. Saad, P. Neuenschwander, G. K. Uhlschmid, et al., New versatile, elastomeric, degradable polymeric materials for medicine, Int. J. Biol. Macromol., 1999, 25, 293–301.
T. Courtney, M. S. Sacks, J. Stankus, et al., Design and analysis of tissue engineering sca olds that mimic so tissue mechanical anisotropy, Biomaterials, 2006, 27, 3631–3638.
P. Carampin, M. T. Conconi, S. Lora, et al., Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation, J. Biomed. Mater. Res. A, 2007, 80A, 661–668.
P. Y. W. Dankers, M. C. Harmsen, L. A. Brouwer, et al., A modular and supramolecular approach to bioactive sca olds for tissue engineering, Nat. Mater., 2005, 4, 568–574.
M. Vert, S. M. Li, G. Spenlehauer, et al., Bioresorbability and biocompatibility of aliphatic polyesters, J. Mater. Sci. Med., 1992, 3, 432–446.
X. Zong, H. Bien, C. Chung, et al., Electrospun fine-textured sca olds for heart tissue constructs, Biomaterials, 2005, 26, 5330–5338.
Y. Dong, S. Liao, M. Ngiam, et al., Degradation Behaviors of Electrospun Resorbable Polyester Nanofibers, Tissue Eng. Part B Rev., 2009, 15, 333–351.
O. Böstman and H. Pihlajamäki, Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review, Biomaterials, 2000, 21, 2615–2621.
114