Page 37 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 37
BIODEGRADABLE MAGNESIUM-BASED SUPPORTS FOR THERAPY OF VASCULAR DISEASE A GENERAL VIEW
[100] L.E. McNamara, R.J. McMurray, M.J.P. Biggs, F. Kantawong, R.O.C. Oreffo, M.J. Dalby, Nanotopographical control of stem cell
differentiation, J. Tissue Eng. 1 (2010) 120623.
[101] B.M. Holzapfel, J.C. Reichert, J.-T. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, D.W. Hutmacher,
How smart do biomaterials need to be? A translational science and clinical point of view, Adv. Drug Deliv. Rev. 65 (2013) 581–603. 2 [102] D. McGrouther, J.N. Chapman, Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation, Appl.
Phys. Lett. 87 (2005).
[103] S.P. Patel, D. Kanjilal, L. Kumar, Nanopatterning of ZnS thin film surfaces by keV ion beam irradiation, Surf. Coatings Tech- nol. 206 (2011) 487–491.
[104] G. Bruny, S. Eden, S. Feil, R. Fillol, K. El Farkh, M.M. Harb, C. Teyssier, S. Ouaskit, H. Abdoul-Carime, B. Farizon, others, A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: A high intensity mass-and- energy selected cluster beam, Rev. Sci. Instrum. 83 (2012) 13305.
[105] T. Hirota, N. Toyoda, A. Yamamoto, I. Yamada, Modification and smoothing of patterned surface by gas cluster ion beam irradiation, Appl. Surf. Sci. 256 (2009) 1110–1113.
[106] T. Seki, T. Murase, J. Matsuo, Cluster size dependence of sputtering yield by cluster ion beam irradiation, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 242 (2006) 179–181.
[107] G.H. Takaoka, H. Ryuto, R. Araki, T. Yakushiji, Surface Modification of Polymer Substrates by Oxygen Ion Irradiation, in: ION Implant. Technol. 17th Int. Conf. Ion Implant. Technol., 2008: pp. 240–243.
[108] I.-H. Kim, S.-H. Kim, Effects of ion beam irradiation on the properties and epitaxial growth of aluminium nitride film by the ion beam assisted deposition process, Thin Solid Films. 253 (1994) 47–52.
[109] C.A. Mullan, C.J. Kiely, A. Rockett, M. Imanieh, M. V Yakushev, R.D. Tomlinson, Studies of the Effects of Ion-Implantation and Electron Beam Irradiation on CuInSe 2 Single Crystals, in: MRS Proc., 1992: p. 1097.
[110] Y. Serruys, M.-O. Ruault, P. Trocellier, S. Henry, O. Kaïtasov, P. Trouslard, Multiple ion beam irradiation and implantation: JANNUS project, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 240 (2005) 124–127.
[111] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, Y. Ichihashi, F. Goto, M. Ishida, T. Sasaki, M. Anpo, Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method, J. Synchrotron Radiat. 8 (2001) 569–571.
[112] I. Yamada, A short review of ionized cluster beam technology, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 99 (1995) 240–243.
[113] I. Yamada, J. Matsuo, N. Toyoda, others, Cluster ion beam process technology, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 206 (2003) 820–829.
[114] I. Yamada, N. Toyoda, Nano-scale surface modification using gas cluster ion beams—A development history and review of the Japanese nano-technology program, Surf. Coatings Technol. 201 (2007) 8579–8587.
[115] A.A. Rogachev, S. Tamulevičius, A. V Rogachev, I. Prosycevas, M. Andrulevičius, Features of Polytetrafluoroethylene Coating Growth on Activated Surfaces from Gas Phase, in: Interface Control. Org. Thin Film., Springer, 2009: pp. 85–89.
[116] X. Li, Z. He, J. Yuan, G. Zeng, Y. He, M. Lei, Long-term results of permanent metallic stent implantation in the treatment of benign upper urinary tract occlusion, Int. J. Urol. 14 (2007) 693–698.
[117] M. Vedani, Q. Ge, W. Wu, L. Petrini, Texture effects on design of Mg biodegradable stents, Int. J. Mater. Form. 7 (2012) 31–38. doi:10.1007/s12289-012-1108-5.
[118] E. Galvin, M.M. Morshed, C. Cummins, S. Daniels, C. Lally, B. MacDonald, Surface Modification of Absorbable Magnesium Stents by Reactive Ion Etching, Plasma Chem. Plasma Process. 33 (2013) 1137–1152. doi:10.1007/s11090-013-9477-1.
[119] Y. Xin, K. Huo, H. Tao, G. Tang, P.K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment, Acta Biomater. 4 (2008).
[120] P.K. Bowen, J. Drelich, J. Goldman, A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior., Mater. Sci. Eng. C. Mater. Biol. Appl. 33 (2013) 5064–70. doi:10.1016/j.msec.2013.08.042.
[121] P.K. Bowen, J. Drelich, J. Goldman, Magnesium in the murine artery: probing the products of corrosion., Acta Bioma- ter. 10 (2014) 1475–83. doi:10.1016/j.actbio.2013.11.021.
35