Page 39 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 39

BIODEGRADABLE MAGNESIUM-BASED SUPPORTS FOR THERAPY OF VASCULAR DISEASE A GENERAL VIEW
 [141] R. Montoya, C. Iglesias, M.L. Escudero, M.C. Garcia-Alonso, Modeling in vivo corrosion of AZ31 as temporary biodegradable
implants. Experimental validation in rats, Mater. Sci. Eng. C. 41 (2014) 127–133.
[142] G. Williams, H. ap Llwyd Dafydd, R. Grace, The localised corrosion of Mg alloy AZ31 in chloride containing electrolyte stud-
ied by a scanning vibrating electrode technique, Electrochim. Acta. 109 (2013) 489–501. 2 [143] Y.H. Wu, N. Li, Y. Cheng, Y.F. Zheng, Y. Han, In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA
composite, J. Mater. Sci. Technol. 29 (2013) 545–550.
[144] S. Feliu, A. Samaniego, A.A. El-Hadad, I. Llorente, The effect of NaHCO 3 treatment time on the corrosion resistance of com- mercial magnesium alloys AZ31 and AZ61 in 0.6 M NaCl solution, Corros. Sci. 67 (2013) 204–216.
[145] S. Feliu, A. Samaniego, V. Barranco, A.A. El-Hadad, I. Llorente, C. Serra, J.C. Galván, A study on the relationships between corrosion properties and chemistry of thermally oxidised surface films formed on polished commercial magnesium alloys AZ31 and AZ61, Appl. Surf. Sci. 295 (2014) 219–230.
[146] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng. R Reports. 77 (2014) 1–34.
[147] Y. Zheng, Y. Li, J. Chen, Z. Zou, Surface characteristics and corrosion resistance of biodegradable magnesium alloy ZK60 modified by Fe ion implantation and deposition, Prog. Nat. Sci. Mater. Int. 24 (2014) 547–553. doi:10.1016/j.pnsc.2014.08.011. [148] S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R.D. Agarwal, D. Lahiri, Strengthening of Mg based alloy through grain refinement for orthopaedic application, J. Mech. Behav. Biomed. Mater. 59 (2016) 57–70.
[149] X. Lin, L. Tan, Q. Wang, G. Zhang, B. Zhang, K. Yang, In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model, Mater. Sci. Eng. C. 33 (2013) 3881–3888.
[150] J. Zhang, N. Kong, Y. Shi, J. Niu, L. Mao, H. Li, M. Xiong, G. Yuan, Influence of proteins and cells on in vitro corrosion of Mg–Nd–Zn–Zr alloy, Corros. Sci. 85 (2014) 477–481. doi:10.1016/j.corsci.2014.04.020.
[151] W.D. Müller, M.L. Nascimento, M. Zeddies, M. Córsico, L.M. Gassa, M.A.F.L. de Mele, Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques, Mater. Res. 10 (2007) 5–10.
[152] W. Jin, G. Wu, H. Feng, W. Wang, X. Zhang, P.K. Chu, Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation, Corros. Sci. 94 (2015) 142–155. doi:10.1016/j.corsci.2015.01.049. [153] W.R. Zhou, Y.F. Zheng, M. a Leeflang, J. Zhou, Mechanical property, biocorrosion and in vitro biocompatibility evalua- tions of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application., Acta Biomater. 9 (2013) 8488–98. doi:10.1016/j.act- bio.2013.01.032.
[154] L. Wolters, S. Besdo, N. Angrisani, P. Wriggers, B. Hering, J.-M. Seitz, J. Reifenrath, Degradation behaviour of LAE442-based plate--screw-systems in an in vitro bone model, Mater. Sci. Eng. C. 49 (2015) 305–315.
[155] F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, F. Beckmann, In vivo corrosion and corrosion protection of mag- nesium alloy LAE442, Acta Biomater. 6 (2010) 1792–1799.
[156] P. Minárik, R. Král, J. Pešička, F. Chmelík, Evolution of mechanical properties of LAE442 magnesium alloy processed by extrusion and ECAP, J. Mater. Res. Technol. 4 (2015) 75–78.
[157] X.-N. Gu, Y.-F. Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China. 4 (2010) 111–115. doi:10.1007/s11706-010-0024-1.
[158] E. Willbold, X. Gu, D. Albert, K. Kalla, K. Bobe, M. Brauneis, C. Janning, J. Nellesen, W. Czayka, W. Tillmann, others, Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium, Acta Biomater. 11 (2015) 554–562.
[159] H. Kalb, A. Rzany, B. Hensel, Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magne- sium under exposure to simulated body fluid, Corros. Sci. 57 (2012) 122–130.
[160] M. a. Surmeneva, T.M. Mukhametkaliye, H. Khakb, R. a. Surmene, M. Bobby Kannan, Ultrathin film coating of hydroxy- apatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications, Mater. Lett. 152 (2015) 280–282. doi:10.1016/j.matlet.2015.03.140.
[161] D.-T. Chou, D. Hong, P. Saha, J. Ferrero, B. Lee, Z. Tan, Z. Dong, P.N. Kumta, In vitro and in vivo corrosion, cytocompat- ibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials., Acta Biomater. 9 (2013) 8518–33. doi:10.1016/j.ac tbio.2013.06.025.
  37












































































   37   38   39   40   41