Page 36 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 36

CHAPTER 2
 [80] S. Hiromoto, A. Yamamoto, Control of degradation rate of bioabsorbable magnesium by anodization and steam treatment, Mater. Sci. Eng. C. 30 (2010) 1085–1093. doi:10.1016/j.msec.2010.06.001.
[81] K.W. Guo, A review of magnesium/magnesium alloys corrosion and its protection, Recent Pat. Corros. Sci. 2 (2010) 13–21. [82] T.S.N.S. Narayanan, I.S. Park, M.H. Lee, Progress in Materials Science Strategies to improve the corrosion resistance of microarc oxidation ( MAO ) coated magnesium alloys for degradable implants : Prospects and challenges, 60 (2014) 1–71.
[83] T.S.N. Sankara Narayanan, I.S. Park, M.H. Lee, Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges, Prog. Mater. Sci. 60 (2014) 1–71. doi:10.1016/j. pmatsci.2013.08.002.
[84] a. Seyfoori, S. Mirdamadi, M. Mehrjoo, a. Khavandi, In-vitro assessments of micro arc oxidized ceramic films on AZ31 magne- sium implant: Degradation and cell-surface response, Prog. Nat. Sci. Mater. Int. 23 (2013) 425–433. doi:10.1016/j.pnsc.2013.06.008. [85] Y. Zhang, K. Bai, Z. Fu, C. Zhang, H. Zhou, L. Wang, S. Zhu, S. Guan, D. Li, J. Hu, Applied Surface Science Composite coating prepared by micro-arc oxidation followed by sol – gel process and in vitro degradation properties, Appl. Surf. Sci. 258 (2012) 2939–2943. doi:10.1016/j.apsusc.2011.11.011.
[86] H. Tang, D. Yu, Y. Luo, F. Wang, Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment, Appl. Surf. Sci. 264 (2013) 816–822. doi:10.1016/j.apsusc.2012.10.146.
[87] D. Jovanovic, F. V. Roukes, A. Löber, G.E. Engels, W. Van Oeveren, X.J.G. Van Seijen, M.J. a. Van Luyn, M.C. Harmsen, A.J. Schouten, Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering, Materials (Basel). 4 (2011) 1705– 1727. doi:10.3390/ma4101705.
[88] E. Bat, T.G. van Kooten, M.C. Harmsen, J. a Plantinga, M.J. a van Luyn, J. Feijen, D.W. Grijpma, Physical properties and ero- sion behavior of poly(trimethylene carbonate-co-ε-caprolactone) networks., Macromol. Biosci. 13 (2013) 573–83. doi:10.1002/ mabi.201200373.
[89] E. Bat, J. a Plantinga, M.C. Harmsen, M.J. a van Luyn, J. Feijen, D.W. Grijpma, In vivo behavior of trimethylene carbonate and ε-caprolactone-based (co)polymer networks: degradation and tissue response., J. Biomed. Mater. Res. A. 95 (2010) 940–9. doi:10.1002/jbm.a.32921.
[90] E. Bat, M.C. Harmsen, J. a Plantinga, M.J. a van Luyn, J. Feijen, D.W. Grijpma, Flexible scaffolds based on poly(trimethylene carbonate) networks for cardiac tissue engineering., J. Control. Release. 148 (2010) e74-6. doi:10.1016/j.jconrel.2010.07.013.
[91] R. Tejero, E. Anitua, G. Orive, Progress in Polymer Science Toward the biomimetic implant surface : Biopolymers on titanium- based implants for bone regeneration, Prog. Polym. Sci. 39 (2014) 1406–1447. doi:10.1016/j.progpolymsci.2014.01.001.
[92] X. Tang, S.K. Thankappan, P. Lee, S.E. Fard, M.D. Harmon, Natural and Synthetic Biomedical Polymers, Elsevier, 2014. doi:10.1016/B978-0-12-396983-5.00022-3.
[93] Z.-Y. Qiu, C. Chen, X.-M. Wang, I.-S. Lee, Advances in the surface modification techniques of bone-related implants for last 10 years, Regen. Biomater. 1 (2014) 67–79.
[94] B. Kateb, J.D. Heiss, J.P. Allain, T. Tigno, R. Armonda, Nanotechnology for Cerebral Aneurysm Treatment, in: Textb. Nanoneu- roscience Nanoneurosurgery, CRC Press, 2013: pp. 259–282.
[95] E. Chung, L.M. Ricles, R.S. Stowers, S.Y. Nam, S.Y. Emelianov, L.J. Suggs, Multifunctional nanoscale strategies for enhancing and monitoring blood vessel regeneration, Nano Today. 7 (2012) 514–531.
[96] M. Modic, I. Junkar, A. Vesel, M. Mozetic, Aging of plasma treated surfaces and their effects on platelet adhesion and activa- tion, Surf. Coatings Technol. 213 (2012) 98–104.
[97] L.P. Brewster, D. Bufallino, A. Ucuzian, H.P. Greisler, Growing a living blood vessel: insights for the second hundred years, Biomaterials. 28 (2007) 5028–5032.
[98] M.J.P. Biggs, R.G. Richards, M.J. Dalby, Nanotopographical modification: a regulator of cellular function through focal adhe- sions, Nanomedicine Nanotechnology, Biol. Med. 6 (2010) 619–633.
[99] T. Toyoshima, W. Wagner, M.O. Klein, E. Stender, M. Wieland, B. Al-Nawas, Primary Stability of a Hybrid Self-Tapping Implant Compared to a Cylindrical Non-Self-Tapping Implant with Respect to Drilling Protocols in an Ex Vivo Model, Clin. Implant Dent. Relat. Res. 13 (2011) 71–78.
 34















































































   34   35   36   37   38