Page 172 - Physico-Chemical Niche Conditions for Bone Cells
P. 172

General discussion
REFERENCES
1. Zheng, C.-X.; Sui, B.-D.; Qiu, X.-Y.; Hu, C.-H.; Jin, Y. Mitochondrial regulation of stem cells in bone homeostasis. Trends Mol. Med. 2020, 26, 89–104, doi:10.1016/j.molmed.2019.04.008.
2. Almeida, M.; Laurent, M.R.; Dubois, V.; Claessens, F.; O’Brien, C.A.; Bouillon, R.; Vanderschueren, D.; Manolagas, S.C. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol. Rev. 2017, 97, 135–187, doi:10.1152/physrev.00033.2015.
3. Tang, Y.; Wu, X.; Lei, W.; Pang, L.; Wan, C.; Shi, Z.; Zhao, L.; Nagy, T.R.; Peng, X.; Hu, J.; et al. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009, 15, 757–765, doi:10.1038/nm.1979.
4. Wei, J.; Shimazu, J.; Makinistoglu, M.P.; Maurizi, A.; Kajimura, D.; Zong, H.; Takarada, T.; Iezaki, T.; Pessin, J.E.; Hinoi, E.; et al. Glucose uptake and runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 2015, 161, 1576–1591, doi:10.1016/j.cell.2015.05.029.
5. Ambrosi, T.H.; Scialdone, A.; Graja, A.; Gohlke, S.; Jank, A.-M.; Bocian, C.; Woelk, L.; Fan, H.; Logan, D.W.; Schürmann, A.; et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 2017, 20, 771-784.e6, doi:10.1016/j.stem.2017.02.009.
6. Rauch, A.; Seitz, S.; Baschant, U.; Schilling, A.F.; Illing, A.; Stride, B.; Kirilov, M.; Mandic, V.; Takacz, A.; Schmidt-Ullrich, R.; et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 2010, 11, 517–531, doi:10.1016/j.cmet.2010.05.005.
7. Wang, L.; Zhao, Y.; Liu, Y.; Akiyama, K.; Chen, C.; Qu, C.; Jin, Y.; Shi, S. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling. Stem Cells 2013, 31, 1383–1395, doi:10.1002/stem.1388.
8. de Albuquerque Taddei, S.R.; Queiroz-Junior, C.M.; Moura, A.P.; Andrade, I.; Garlet, G.P.; Proudfoot, A.E.I.; Teixeira, M.M.; da Silva, T.A. The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Bone 2013, 52, 259–267, doi:10.1016/j.bone.2012.09.036.
9. Shariatzadeh, M.; Adrien, B.; Perreault, C. M.; Lacroix, D. Effect of mechanical loading on osteogenesis of human embryonic stem cell-derived mesenchymal progenitors within collagen microspheres. J. Cell Sci. Ther. 2018, 09, 10, doi:10.4172/2157- 7013.1000282.
10. Verstappen, J.F.M.; Jin, J.; Koçer, G.; Haroon, M.; Jonkheijm, P.; Bakker, A.D.; Klein- Nulend, J.; Jaspers, R.T. RGD-functionalized supported lipid bilayers modulate pre- osteoblast adherence and promote osteogenic differentiation. J. Biomed. Mater. Res. Part A 2020, 108, 923–937, doi:10.1002/jbm.a.36870.
11. Li, X.; Liu, D.; Li, J.; Yang, S.; Xu, J.; Yokota, H.; Zhang, P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model. FASEB J. 2019, 33, 8913–8924, doi:10.1096/fj.201802711R.
12. Ohlstein, B.; Kai, T.; Decotto, E.; Spradling, A. The stem cell niche: theme and variations. Curr Opin Cell Biol 2004, 16, 693–699, doi:10.1016/j.ceb.2004.09.003.
13. Florencio-Silva, R.; Sasso, G.; Sasso-Cerri, E.; Simões, M.; Cerri, P. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res. Int. 2015, 2015, 1–17, doi:10.1155/2015/421746.
14. Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 1995, 28, 1529–1541, doi:10.1016/0021-9290(95)00100-X.
15. Peeters, E.A.G.; Bouten, C.V.C.; Oomens, C.W.J.; Bader, D.L.; Snoeckx, L.H.E.H.; Baaijens, F.P.T. Anisotropic, three-dimensional deformation of single attached cells under compression. Ann. Biomed. Eng. 2004, 32, 1443–1452, doi:10.1114/B:ABME.0000042231.59230.72.
170

















































































   170   171   172   173   174