Page 40 - Tyrosine-Based Bioconjugations - Jorick Bruins
P. 40
Chapter 1
(105) Long, M. J. C., and Hedstrom, L., Mushroom tyrosinase oxidizes tyrosine-rich sequences to allow selective protein functionalization. ChemBioChem 2012, 13 (12), 1818-25.
(106) Behrens, C. R., Hooker, J. M., Obermeyer, A. C., Romanini, D. W., Katz, E. M., and Francis,
M. B., Rapid Chemoselective Bioconjugation through Oxidative Coupling of Anilines and
Aminophenols. J. Am. Chem. Soc. 2011, 133 (41), 16398-401.
(107) Obermeyer, A. C., Jarman, J. B., Netirojjanakul, C., El Muslemany, K., and Francis, M. B.,
Mild Bioconjugation Through the Oxidative Coupling of ortho-Aminophenols and Anilines
with Ferricyanide. Angew. Chem. Int. Ed. 2014, 53 (4), 1057-61.
(108) El Muslemany, K. M., Twite, A. A., ElSohly, A. M., Obermeyer, A. C., Mathies, R. A., and
Francis, M. B., Photoactivated Bioconjugation Between ortho-Azidophenols and Anilines: A Facile Approach to Biomolecular Photopatterning. J. Am. Chem. Soc. 2014, 136 (36), 12600-6.
(109) Obermeyer, A. C., Jarman, J. B., and Francis, M. B., N-Terminal Modification of Proteins with o-Aminophenols. J. Am. Chem. Soc. 2014, 136 (27), 9572-9.
(110) ElSohly, A. M., and Francis, M. B., Development of Oxidative Coupling Strategies for Site- Selective Protein Modification. Acc. Chem. Res. 2015, 48 (7), 1971-8.
(111) Hooker, J. M., Kovacs, E. W., and Francis, M. B., Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 2004, 126 (12), 3718-9.
(112) Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., Baselga, J., Pegram, M., Oh, D. Y., Dieras, V., Guardino, E., et al., Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012, 367 (19), 1783-91.
(113) Palla, K. S., Hurlburt, T. J., Buyanin, A. M., Somorjai, G. A., and Francis, M. B., Site-Selective Oxidative Coupling Reactions for the Attachment of Enzymes to Glass Surfaces through DNA-Directed Immobilization. J. Am. Chem. Soc. 2017, 139 (5), 1967-74.
(114) Van de Water, R. W., and Pettus, T. R. R., o-quinone methides: intermediates underdeveloped and underutilized in organic synthesis. Tetrahedron 2002, 58 (27), 5367- 405.
(115) Singh, M. S., Nagaraju, A., Anand, N., and Chowdhury, S., ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis. RSC Adv. 2014, 4 (99), 55924-59.
(116) Parra, A., and Tortosa, M., para-Quinone Methide: a New Player in Asymmetric Catalysis. Chemcatchem 2015, 7 (10), 1524-6.
(117) Jaworski, A. A., and Scheidt, K. A., Emerging Roles of in Situ Generated Quinone Methides in Metal-Free Catalysis. J. Org. Chem. 2016, 81 (21), 10145-53.
(118) Willis, N. J., and Bray, C. D., ortho-Quinone Methides in Natural Product Synthesis. Chem. - Eur. J. 2012, 18 (30), 9160-73.
(119) Kumar, D., Veldhuyzen, W. F., Zhou, Q. B., and Rokita, S. E., Conjugation of a hairpin pyrrole-imidazole polyamide to a quinone methide for control of DNA cross-linking. Bioconjugate Chem. 2004, 15 (4), 915-22.
(120) Percivalle, C., Doria, F., and Freccero, M., Quinone Methides as DNA Alkylating Agents: An Overview on Efficient Activation Protocols for Enhanced Target Selectivity. Curr. Org. Chem. 2014, 18 (1), 19-43.
(121) Weinert, E. E., Dondi, R., Colloredo-Melz, S., Frankenfield, K. N., Mitchell, C. H., Freccero, M., and Rokita, S. E., Substituents on quinone methides strongly modulate formation and stability of their nucleophilic adducts. J. Am. Chem. Soc. 2006, 128 (36), 11940-7.
(122) Huang, C. Y., and Rokita, S. E., DNA alkylation promoted by an electron-rich quinone methide intermediate. Front. Chem. Sci. Eng. 2016, 10 (2), 213-21.
38