Page 187 - Molecular features of low-grade developmental brain tumours
P. 187
tuberous sclerosis complex proteins in brain lesions. Cancer Res 64, 812-816, doi:10.1158/0008-
5472.can-03-3277 (2004).
55. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional
inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121,
179-193, doi:10.1016/j.cell.2005.02.031 (2005).
56. Ma, L. et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-
regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res
67, 7106-7112, doi:10.1158/0008-5472.CAN-06-4798 (2007).
57. Mi, R., Ma, J., Zhang, D., Li, L. & Zhang, H. Efficacy of combined inhibition of mTOR and ERK/MAPK
pathways in treating a tuberous sclerosis complex cell model. J Genet Genomics 36, 355-361,
doi:10.1016/S1673-8527(08)60124-1 (2009).
58. Lu, Y., Zhang, E. Y., Liu, J. & Yu, J. J. Inhibition of the mechanistic target of rapamycin induces cell
survival via MAPK in tuberous sclerosis complex. Orphanet J Rare Dis 15, 209, doi:10.1186/s13023-
020-01490-w (2020).
59. Govindarajan, B. et al. Tuberous sclerosis-associated neoplasms express activated p42/44 mitogen-
activated protein (MAP) kinase, and inhibition of MAP kinase signaling results in decreased in vivo
tumor growth. Clin Cancer Res 9, 3469-3475 (2003).
60. Sadowski, K., Kotulska, K. & Jozwiak, S. Management of side effects of mTOR inhibitors in tuberous
sclerosis patients. Pharmacol Rep 68, 536-542, doi:10.1016/j.pharep.2016.01.005 (2016).
61. Cheng, Y. & Tian, H. Current Development Status of MEK Inhibitors. Molecules 22, doi:10.3390/
molecules22101551 (2017).
62. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev
Biol 17, 463-516, doi:10.1146/annurev.cellbio.17.1.463 (2001).
63. Shi, Y. B., Fu, L., Hasebe, T. & Ishizuya-Oka, A. Regulation of extracellular matrix remodeling and cell
fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development. Pharmacol Ther 116, 391-400, doi:10.1016/j.pharmthera.2007.07.005 (2007).
64. Wang, L. et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26, 5996-6003, doi:10.1523/ JNEUROSCI.5380-05.2006 (2006).
65. Rundhaug, J. E. Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 9: 00-00, 2003. Clin Cancer Res 9, 551-554 (2003).
66. Rosenberg, G. A. & Yang, Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22, E4, doi:10.3171/foc.2007.22.5.5 (2007).
67. Van Lint, P. & Libert, C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82, 1375-1381, doi:10.1189/ jlb.0607338 (2007).
68. Nakamura, H. et al. Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res 64, 876-882, doi:10.1158/0008-5472.can- 03-3502 (2004).
69. Lee, K. Y. et al. Human brain endothelial cell-derived COX-2 facilitates extravasation of breast cancer cells across the blood-brain barrier. Anticancer Res 31, 4307-4313 (2011).
GENERAL DISCUSSION
185
7