Page 185 - Molecular features of low-grade developmental brain tumours
P. 185
(2011).
20. Carson, R. P., Van Nielen, D. L., Winzenburger, P. A. & Ess, K. C. Neuronal and glia abnormalities in
Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol Dis 45, 369-380, doi:10.1016/j.
nbd.2011.08.024 (2012).
21. Magri, L. et al. Timing of mTOR activation affects tuberous sclerosis complex neuropathology in
mouse models. Dis Model Mech 6, 1185-1197, doi:10.1242/dmm.012096 (2013).
22. Caban, C., Khan, N., Hasbani, D. M. & Crino, P. B. Genetics of tuberous sclerosis complex: implications
for clinical practice. Appl Clin Genet 10, 1-8, doi:10.2147/TACG.S90262 (2017).
23. Qin, W. et al. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 20,
1096-1105, doi:10.1111/j.1750-3639.2010.00416.x (2010).
24. Niida, Y. et al. Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas
suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 69, 493-
503, doi:10.1086/321972 (2001).
25. Chan, J. A. et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytornas: Biallelic
inactivation of TSC1 or TSC2 leads to rnTOR activation. J Neuropath Exp Neur 63, 1236-1242, doi:DOI
10.1093/jnen/63.12.1236 (2004).
26. Giannikou, K. et al. Subependymal giant cell astrocytomas are characterized by mTORC1
hyperactivation, a very low somatic mutation rate, and a unique gene expression profile. Mod
Pathol, doi:10.1038/s41379-020-00659-9 (2020).
27. Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat Commun 8, 15816,
doi:10.1038/ncomms15816 (2017).
28. Qin, W. et al. Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis
complex. Hum Genet 127, 573-582, doi:10.1007/s00439-010-0801-z (2010).
29. Peron, A., Au, K. S. & Northrup, H. Genetics, genomics, and genotype-phenotype correlations of TSC: Insights for clinical practice. Am J Med Genet C Semin Med Genet 178, 281-290, doi:10.1002/
ajmg.c.31651 (2018).
30. Ogorek, B. et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC
infants: results of the EPISTOP study. Genet Med 22, 1489-1497, doi:10.1038/s41436-020-0823-4
(2020).
31. van Eeghen, A. M., Black, M. E., Pulsifer, M. B., Kwiatkowski, D. J. & Thiele, E. A. Genotype and cognitive
phenotype of patients with tuberous sclerosis complex. Eur J Hum Genet 20, 510-515, doi:10.1038/
ejhg.2011.241 (2012).
32. Jansen, F. E. et al. Overlapping neurologic and cognitive phenotypes in patients with TSC1 or TSC2
mutations. Neurology 70, 908-915, doi:10.1212/01.wnl.0000280578.99900.96 (2008).
33. Dabora, S. L. et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68,
64-80, doi:10.1086/316951 (2001).
34. Jiang, W. G. et al. Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in
human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 41, 1628-1636,
doi:10.1016/j.ejca.2005.03.023 (2005).
35. Lesma, E. et al. The methylation of the TSC2 promoter underlies the abnormal growth of TSC2
angiomyolipoma-derived smooth muscle cells. Am J Pathol 174, 2150-2159, doi:10.2353/
ajpath.2009.080799 (2009).
36. Zhang, J. et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade
GENERAL DISCUSSION
183
7