Page 186 - Molecular features of low-grade developmental brain tumours
P. 186
7
184
CHAPTER 7
gliomas. Nat Genet 45, 602-612, doi:10.1038/ng.2611 (2013).
37. Ryall, S. et al. Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas.
Cancer Cell 37, 569-583 e565, doi:10.1016/j.ccell.2020.03.011 (2020).
38. Johnson, A. et al. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas
Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist 22,
1478-1490, doi:10.1634/theoncologist.2017-0242 (2017).
39. Brandner, S. & von Deimling, A. Diagnostic, prognostic and predictive relevance of molecular
markers in gliomas. Neuropathol Appl Neurobiol 41, 694-720, doi:10.1111/nan.12246 (2015).
40. Cancer Genome Atlas Research, N. et al. Comprehensive, Integrative Genomic Analysis of Diffuse
Lower-Grade Gliomas. N Engl J Med 372, 2481-2498, doi:10.1056/NEJMoa1402121 (2015).
41. Lee, D. et al. BRAF V600E mutations are frequent in dysembryoplastic neuroepithelial tumors and
subependymal giant cell astrocytomas. J Surg Oncol 111, 359-364, doi:10.1002/jso.23822 (2015).
42. Penman, C. L., Faulkner, C., Lowis, S. P. & Kurian, K. M. Current Understanding of BRAF Alterations in Diagnosis, Prognosis, and Therapeutic Targeting in Pediatric Low-Grade Gliomas. Front Oncol 5,
54, doi:10.3389/fonc.2015.00054 (2015).
43. Schindler, G. et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high
mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar
pilocytic astrocytoma. Acta Neuropathol 121, 397-405, doi:10.1007/s00401-011-0802-6 (2011).
44. Patel, R. R., Ramkissoon, S. H., Ross, J. & Weintraub, L. Tumor mutational burden and driver mutations: Characterizing the genomic landscape of pediatric brain tumors. Pediatr Blood Cancer
67, e28338, doi:10.1002/pbc.28338 (2020).
45. Binder, H. et al. DNA methylation, transcriptome and genetic copy number signatures of diffuse
cerebral WHO grade II/III gliomas resolve cancer heterogeneity and development. Acta Neuropathol
Commun 7, 59, doi:10.1186/s40478-019-0704-8 (2019).
46. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683-692, doi:10.1016/j.cell.2007.01.029
(2007).
47. Kobow, K. & Blumcke, I. Epigenetics in epilepsy. Neurosci Lett 667, 40-46, doi:10.1016/j.
neulet.2017.01.012 (2018).
48. Gos, M. Epigenetic mechanisms of gene expression regulation in neurological diseases. Acta
Neurobiol Exp (Wars) 73, 19-37 (2013).
49. Capper, D. et al. Practical implementation of DNA methylation and copy-number-based CNS tumor
diagnostics: the Heidelberg experience. Acta Neuropathol 136, 181-210, doi:10.1007/s00401-018-
1879-y (2018).
50. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature
555, 469-474, doi:10.1038/nature26000 (2018).
51. Tyburczy, M. E. et al. Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of
patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176, 1878-
1890, doi:10.2353/ajpath.2010.090950 (2010).
52. Boer, K. et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals
increased expression of adhesion and inflammatory factors. Brain Pathol 20, 704-719, doi:10.1111/
j.1750-3639.2009.00341.x (2010).
53. Mills, J. D. et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex
cortical tubers: implications for pathophysiology and treatment. Sci Rep 7, 8089, doi:10.1038/
s41598-017-06145-8 (2017).
54. Han, S. et al. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the