Page 149 - Molecular features of low-grade developmental brain tumours
P. 149

DYSREGULATION OF MMP/TIMP IN SEGA: MODULATION BY MIR-320D IN VITRO
data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
56. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids
Res 39, D691-697, doi:10.1093/nar/gkq1018 (2011).
57. Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res 46, D649-D655,
doi:10.1093/nar/gkx1132 (2018).
58. Dweep, H., Gretz, N. & Sticht, C. miRWalk database for miRNA-target interactions. Methods Mol Biol
1182, 289-305, doi:10.1007/978-1-4939-1062-5_25 (2014).
59. Dweep, H., Sticht, C., Pandey, P. & Gretz, N. miRWalk--database: prediction of possible miRNA
binding sites by “walking” the genes of three genomes. J Biomed Inform 44, 839-847, doi:10.1016/j.
jbi.2011.05.002 (2011).
60. Bongaarts, A. et al. MicroRNA519d and microRNA4758 can identify gangliogliomas from
dysembryoplastic neuroepithelial tumours and astrocytomas. Oncotarget 9, 28103-28115,
doi:10.18632/oncotarget.25563 (2018).
61. Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative
PCR data. Nucleic Acids Res 37, e45, doi:10.1093/nar/gkp045 (2009).
62. Boer, K. et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of
tuberous sclerosis complex. Epilepsy Res 78, 7-21, doi:10.1016/j.eplepsyres.2007.10.002 (2008).
63. Prabowo, A. S. et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and
inflammation. Brain Pathol 23, 45-59, doi:10.1111/j.1750-3639.2012.00616.x (2013).
64. Zhang, B., Zou, J., Rensing, N. R., Yang, M. & Wong, M. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Neurobiol Dis 80, 70-79, doi:10.1016/j.
nbd.2015.04.016 (2015).
65. van Vliet, E. A., Aronica, E. & Gorter, J. A. Blood-brain barrier dysfunction, seizures and epilepsy.
Semin Cell Dev Biol 38, 26-34, doi:10.1016/j.semcdb.2014.10.003 (2015).
66. Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. & Opdenakker, G. Neutrophil gelatinase B
potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4,
and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 96, 2673-2681 (2000).
67. Schonbeck, U., Mach, F. & Libby, P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol
161, 3340-3346 (1998).
68. Mohan, M. J. et al. The tumor necrosis factor-alpha converting enzyme (TACE): a unique
metalloproteinase with highly defined substrate selectivity. Biochemistry 41, 9462-9469, doi:10.1021/
bi0260132 (2002).
69. Gidday, J. M. et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier
breakdown and is proinflammatory after transient focal cerebral ischemia. American journal of physiology. Heart and circulatory physiology 289, H558-568, doi:10.1152/ajpheart.01275.2004 (2005).
70. Justicia, C. et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 23, 1430-1440, doi:10.1097/01.Wcb.0000090680.07515.C8 (2003).
147
 5






























































   147   148   149   150   151