Page 147 - Molecular features of low-grade developmental brain tumours
P. 147

DYSREGULATION OF MMP/TIMP IN SEGA: MODULATION BY MIR-320D IN VITRO
22. Morimoto, K. & Mogami, H. Sequential CT study of subependymal giant-cell astrocytoma associated with tuberous sclerosis. Case report. J Neurosurg 65, 874-877, doi:10.3171/jns.1986.65.6.0874 (1986).
23. Bongaarts, A. et al. Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 8, 95516-95529, doi:10.18632/oncotarget.20764 (2017).
24. Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat Commun 8, 15816, doi:10.1038/ncomms15816 (2017).
25. Tyburczy, M. E. et al. Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176, 1878- 1890, doi:10.2353/ajpath.2010.090950 (2010).
26. Bongaarts, A. et al. The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas. Brain 143, 131-149, doi:10.1093/brain/awz370 (2020).
27. Boer, K. et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 20, 704-719, doi:10.1111/ j.1750-3639.2009.00341.x (2010).
28. Broekaart, D. W. M. et al. Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b in vitro. Neuropathol Appl Neurobiol, doi:10.1111/ nan.12572 (2019).
29. Mills, J. D. et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep 7, 8089, doi:10.1038/ s41598-017-06145-8 (2017).
30. 30 Rivera, S., Khrestchatisky, M., Kaczmarek, L., Rosenberg, G. A. & Jaworski, D. M. Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 30, 15337- 15357, doi:10.1523/JNEUROSCI.3467-10.2010 (2010).
31. Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69, 562-573, doi:10.1016/j.cardiores.2005.12.002 (2006).
32. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463-516, doi:10.1146/annurev.cellbio.17.1.463 (2001).
33. Shi, Y. B., Fu, L., Hasebe, T. & Ishizuya-Oka, A. Regulation of extracellular matrix remodeling and cell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development. Pharmacol Ther 116, 391-400, doi:10.1016/j.pharmthera.2007.07.005 (2007).
34. Wang, L. et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26, 5996-6003, doi:10.1523/ JNEUROSCI.5380-05.2006 (2006).
35. Rundhaug, J. E. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9, 267-285, doi:10.1111/j.1582-4934.2005.tb00355.x (2005).
36. Rosenberg, G. A. & Yang, Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22, E4 (2007).
37. Van Lint, P. & Libert, C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82, 1375-1381, doi:10.1189/ jlb.0607338 (2007).
38. Nakamura, H. et al. Constitutive and induced CD44 shedding by ADAM-like proteases and
145
 5















































































   145   146   147   148   149