Page 148 - Molecular features of low-grade developmental brain tumours
P. 148

 5
146
CHAPTER 5
membrane-type 1 matrix metalloproteinase. Cancer Res 64, 876-882 (2004).
39. Lee, K. Y. et al. Human brain endothelial cell-derived COX-2 facilitates extravasation of breast cancer
cells across the blood-brain barrier. Anticancer Res 31, 4307-4313 (2011).
40. Belien, A. T., Paganetti, P. A. & Schwab, M. E. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol 144,
373-384, doi:10.1083/jcb.144.2.373 (1999).
41. Vandenbroucke, R. E. & Libert, C. Is there new hope for therapeutic matrix metalloproteinase
inhibition? Nat Rev Drug Discov 13, 904-927, doi:10.1038/nrd4390 (2014).
42. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved
targets of microRNAs. Genome Res 19, 92-105, doi:10.1101/gr.082701.108 (2009).
43. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297,
doi:10.1016/s0092-8674(04)00045-5 (2004).
44. Ha, T. Y. MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune Netw 11,
135-154, doi:10.4110/in.2011.11.3.135 (2011).
45. Cao, D. D., Li, L. & Chan, W. Y. MicroRNAs: Key Regulators in the Central Nervous System and Their
Implication in Neurological Diseases. Int J Mol Sci 17, doi:10.3390/ijms17060842 (2016).
46. Reschke, C. R. & Henshall, D. C. microRNA and Epilepsy. Adv Exp Med Biol 888, 41-70, doi:10.1007/978-
3-319-22671-2_4 (2015).
47. van Scheppingen, J. et al. Expression of microRNAs miR21, miR146a, and miR155 in tuberous
sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell
cultures. Glia 64, 1066-1082, doi:10.1002/glia.22983 (2016).
48. van Scheppingen, J. et al. miR147b: A novel key regulator of interleukin 1 beta-mediated inflammation
in human astrocytes. Glia 66, 1082-1097, doi:10.1002/glia.23302 (2018).
49. Qin, C. Z. et al. Downregulation of MicroRNA-320d predicts poor overall survival and promotes the
growth and invasive abilities in glioma. Chem Biol Drug Des 89, 806-814, doi:10.1111/cbdd.12906
(2017).
50. Xia, H. et al. microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res
1269, 158-165, doi:10.1016/j.brainres.2009.02.037 (2009).
51. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central
Nervous System: a summary. Acta Neuropathol 131, 803-820, doi:10.1007/s00401-016-1545-1
(2016).
52. Northrup, H., Krueger, D. A. & International Tuberous Sclerosis Complex Consensus, G. Tuberous
sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49, 243-254, doi:10.1016/j. pediatrneurol.2013.08.001 (2013).
53. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36, doi:10.1186/gb-2013-14-4-r36 (2013).
54. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930, doi:10.1093/bioinformatics/ btt656 (2014).
55. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq





























































   146   147   148   149   150