Page 119 - Molecular features of low-grade developmental brain tumours
P. 119
THE CODING AND NON-CODING TRANSCRIPTIONAL LANDSCAPE OF SEGA
pathways in treating a tuberous sclerosis complex cell model. J Genet Genomics 36, 355-361,
doi:10.1016/S1673-8527(08)60124-1 (2009).
78. Govindarajan, B. et al. Tuberous sclerosis-associated neoplasms express activated p42/44 mitogen-
activated protein (MAP) kinase, and inhibition of MAP kinase signaling results in decreased in vivo
tumor growth. Clin Cancer Res 9, 3469-3475 (2003).
79. Sadowski, K., Kotulska, K. & Jozwiak, S. Management of side effects of mTOR inhibitors in tuberous
sclerosis patients. Pharmacol Rep 68, 536-542, doi:10.1016/j.pharep.2016.01.005 (2016).
80. Cheng, Y. & Tian, H. Current Development Status of MEK Inhibitors. Molecules 22, doi:10.3390/
molecules22101551 (2017).
81. Shao, Y., Wang, C., Hong, Z. & Chen, Y. Inhibition of p38 mitogen-activated protein kinase signaling
reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats.
J Neurochem 136, 1096-1105, doi:10.1111/jnc.13498 (2016).
82. de Araujo Herculano, B., Vandresen-Filho, S., Martins, W. C., Boeck, C. R. & Tasca, C. I. NMDA
preconditioning protects against quinolinic acid-induced seizures via PKA, PI3K and MAPK/ERK
signaling pathways. Behav Brain Res 219, 92-97, doi:10.1016/j.bbr.2010.12.025 (2011).
83. Pernice, H. F., Schieweck, R., Kiebler, M. A. & Popper, B. mTOR and MAPK: from localized translation
control to epilepsy. BMC Neurosci 17, 73, doi:10.1186/s12868-016-0308-1 (2016).
84. Nateri, A. S. et al. ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J 26,
4891-4901, doi:10.1038/sj.emboj.7601911 (2007).
85. Glazova, M. V. et al. Inhibition of ERK1/2 signaling prevents epileptiform behavior in rats prone to
audiogenic seizures. J Neurochem 132, 218-229, doi:10.1111/jnc.12982 (2015).
86. Gorter, J. A. et al. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis 62, 508-520, doi:10.1016/j.nbd.2013.10.026
(2014).
87. Filipek, P. A. et al. LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late
endosomal positioning. J Cell Biol 216, 4199-4215, doi:10.1083/jcb.201703061 (2017).
88. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary
for its activation by amino acids. Cell 141, 290-303, doi:10.1016/j.cell.2010.02.024 (2010).
89. Wunderlich, W. et al. A novel 14-kilodalton protein interacts with the mitogen-activated protein
kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 152, 765-776 (2001).
90. Ames, H. M., Yuan, M., Vizcaino, M. A., Yu, W. & Rodriguez, F. J. MicroRNA profiling of low-grade glial and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Mod
Pathol 30, 204-216, doi:10.1038/modpathol.2016.177 (2017).
91. Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency
to mTORC1. Science 347, 188-194, doi:10.1126/science.1257132 (2015).
117
4