Page 118 - Molecular features of low-grade developmental brain tumours
P. 118

 4
116
CHAPTER 4
Visualization of Proteomics Data. J Proteome Res 18, 623-632, doi:10.1021/acs.jproteome.8b00702
(2019).
60. Dweep, H., Gretz, N. & Sticht, C. miRWalk database for miRNA-target interactions. Methods Mol Biol
1182, 289-305, doi:10.1007/978-1-4939-1062-5_25 (2014).
61. Dweep, H., Sticht, C., Pandey, P. & Gretz, N. miRWalk--database: prediction of possible miRNA
binding sites by “walking” the genes of three genomes. J Biomed Inform 44, 839-847, doi:10.1016/j.
jbi.2011.05.002 (2011).
62. Bongaarts, A. et al. MicroRNA519d and microRNA4758 can identify gangliogliomas from
dysembryoplastic neuroepithelial tumours and astrocytomas. Oncotarget 9, 28103-28115,
doi:10.18632/oncotarget.25563 (2018).
63. Ramakers, C., Ruijter, J. M., Deprez, R. H. & Moorman, A. F. Assumption-free analysis of quantitative
real-time polymerase chain reaction (PCR) data. Neurosci Lett 339, 62-66 (2003).
64. Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative
PCR data. Nucleic Acids Res 37, e45, doi:10.1093/nar/gkp045 (2009).
65. van Scheppingen, J. et al. miR147b: A novel key regulator of interleukin 1 beta-mediated inflammation
in human astrocytes. Glia 66, 1082-1097, doi:10.1002/glia.23302 (2018).
66. van Scheppingen, J. et al. Expression of microRNAs miR21, miR146a, and miR155 in tuberous
sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell
cultures. Glia 64, 1066-1082, doi:10.1002/glia.22983 (2016).
67. Korotkov, A. et al. Increased expression of matrix metalloproteinase 3 can be attenuated by
inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflammation 15, 211, doi:10.1186/
s12974-018-1245-y (2018).
68. Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that
controls mTORC1. Nature 519, 477-481, doi:10.1038/nature14107 (2015).
69. Boer, K. et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 20, 704-719, doi:10.1111/
j.1750-3639.2009.00341.x (2010).
70. Mills, J. D. et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex
cortical tubers: implications for pathophysiology and treatment. Sci Rep 7, 8089, doi:10.1038/
s41598-017-06145-8 (2017).
71. Boer, K. et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of
tuberous sclerosis complex. Epilepsy Res 78, 7-21, doi:10.1016/j.eplepsyres.2007.10.002 (2008).
72. Zurolo, E. et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of
cortical development. Brain 134, 1015-1032, doi:10.1093/brain/awr032 (2011).
73. Zhang, B., Zou, J., Rensing, N. R., Yang, M. & Wong, M. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Neurobiol Dis 80, 70-79, doi:10.1016/j.
nbd.2015.04.016 (2015).
74. Prabowo, A. S. et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and
inflammation. Brain Pathol 23, 45-59, doi:10.1111/j.1750-3639.2012.00616.x (2013).
75. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K- dependent feedback loop in human cancer. J Clin Invest 118, 3065-3074, doi:10.1172/JCI34739
(2008).
76. Albert, L., Karsy, M., Murali, R. & Jhanwar-Uniyal, M. Inhibition of mTOR Activates the MAPK Pathway
in Glioblastoma Multiforme. Cancer Genomics Proteomics 6, 255-261 (2009).
77. Mi, R., Ma, J., Zhang, D., Li, L. & Zhang, H. Efficacy of combined inhibition of mTOR and ERK/MAPK






















































   116   117   118   119   120