Page 116 - Molecular features of low-grade developmental brain tumours
P. 116

 4
114
CHAPTER 4
mTOR signaling. Genes Dev 17, 1829-1834, doi:10.1101/gad.1110003 (2003).
22. Chan, J. A. et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63, 1236-1242
(2004).
23. Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat Commun 8, 15816,
doi:10.1038/ncomms15816 (2017).
24. Bongaarts, A. et al. Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have
consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 8, 95516-95529,
doi:10.18632/oncotarget.20764 (2017).
25. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional
inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121,
179-193, doi:10.1016/j.cell.2005.02.031 (2005).
26. Ma, L. et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-
regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res
67, 7106-7112, doi:10.1158/0008-5472.CAN-06-4798 (2007).
27. Han, S. et al. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the
tuberous sclerosis complex proteins in brain lesions. Cancer Res 64, 812-816 (2004).
28. Tyburczy, M. E. et al. Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176, 1878-
1890, doi:10.2353/ajpath.2010.090950 (2010).
29. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases
that signal amino acid levels to mTORC1. Cell 150, 1196-1208, doi:10.1016/j.cell.2012.07.032 (2012).
30. de Araujo, M. E. G. et al. Crystal structure of the human lysosomal mTORC1 scaffold complex and its
impact on signaling. Science 358, 377-381, doi:10.1126/science.aao1583 (2017).
31. Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1-MAPK scaffold complex to endosomes
is mediated by p14 and required for signal transduction. Dev Cell 3, 803-814 (2002).
32. Nada, S., Mori, S., Takahashi, Y. & Okada, M. p18/LAMTOR1: a late endosome/lysosome-specific anchor protein for the mTORC1/MAPK signaling pathway. Methods Enzymol 535, 249-263,
doi:10.1016/B978-0-12-397925-4.00015-8 (2014).
33. Franz, D. N. et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas
associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-
controlled phase 3 trial. Lancet 381, 125-132, doi:10.1016/S0140-6736(12)61134-9 (2013).
34. Franz, D. N. et al. Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol 15,
1513-1520, doi:10.1016/S1470-2045(14)70489-9 (2014).
35. Franz, D. N. et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann
Neurol 78, 929-938, doi:10.1002/ana.24523 (2015).
36. Kotulska, K. et al. Long-term effect of everolimus on epilepsy and growth in children under 3 years of
age treated for subependymal giant cell astrocytoma associated with tuberous sclerosis complex.
Eur J Paediatr Neurol 17, 479-485, doi:10.1016/j.ejpn.2013.03.002 (2013).
37. Krueger, D. A. et al. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma.
Neurology 80, 574-580, doi:10.1212/WNL.0b013e3182815428 (2013).
38. Franz, D. N. et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann
Neurol 59, 490-498, doi:10.1002/ana.20784 (2006).
39. Krueger, D. A. et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N























































   114   115   116   117   118