Page 28 - Improved endothelialization by silicone surface modification and fluid hydrodynamics modulation- Implications for oxygenator biocompatibility Nasim
P. 28
REFERENCES
1 Wagner WR, Griffith BP. Reconstructing the lung. Science 2010;329:519-521.
2 Galletti PM, Colton CK. Artificial lungs and blood-gas exchange devices, in Biomedical engineering
handbook. Bronzino JD, Ed. CRC Press LLC, 2000.
3 Song JJ, Ott HC. Bioartificial lung engineering. Am J Transplant 2012;12:283-288.
4 Zwischenberger BA, Clemson LA, Zwischenberger JB. Artificial lung: Progress and prototypes.
Expert Rev Med Devices 2006;3:485-497.
5 Polk AA, Maul TM, McKeel DT, Snyder TA, Lehocky CA, Pitt B, Stolz DB, Federspiel WJ, Wagner
WR. A biohybrid artificial lung prototype with active mixing of endothelialized microporous hollow
fibers. Biotechnol Bioeng 2010;106:490-500.
6 Lemon G, Lim ML, Ajalloueian F, Macchiarini P. The development of the bioartificial lung. Br Med
Bull 2014;110:35-45.
7 Khachab A, Tabesh H, Kashefi A, Mottaghy Kh. Novel concept for pure diffusive capillary
membrane oxygenators: Silicone hollow sphere (SiHSp) fibers. ASAIO J 2013;59:162-168.
8 Thevenot P, Hu W, Tang L. Surface chemistry influence implant biocompatibility. Curr Top Med
Chem 2008;8:270-280.
9 Bridges AW, GarcĂa AJ. Anti-Inflammatory polymeric coatings for implantable biomaterials and
devices. J Diabetes Sci Technol 2008;2:984-994.
10 Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol
2008;20:86-100.
11 Reynolds MM, Annich GM. The artificial endothelium. Organogenesis 2011;7:42-49.
12 Wu B, Gerlitz B, Grinnell BW, Meyerhoff ME. Polymeric coatings that mimic the endothelium:
Combining nitric oxide release with surface-bound active thrombomodulin and heparin.
Biomaterials 2007;28:4047-4055.
13 Zhou Zh, Meyerhoff ME. Preparation and characterization of polymeric coatings with combined
nitric oxide release and immobilized active heparin. Biomaterials 2005;26:6506-6517.
14 de Mel A, Cousins BG, Seifalian AM. Surface modification of biomaterials: A quest for blood
compatibility. Int J Biomater 2012;2012: 707-863.
15 Naghavi N, de Mel A, Alavijeh OS, Cousins BG, Seifalian AM. Nitric oxide donors for
cardiovascular implant applications. Small 2013;9:22-35.
16 Li G, Yang P, Qin W, Maitz MF, Zhou S, Huang N. The effect of coimmobilizing heparin and
fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials 2011;32:4691-
4703.
17 Li J, Zhang K, Wu F, He Z, Yang P, Huang N. Constructing bio-functional layers of hyaluronan and
type IV collagen on titanium surface for improving endothelialization. J Mater Sci 2015;50:3226-
3236.
18 Zhang K, Li J, Deng K, Liu T, Chen JY, Huang N. The endothelialization and hemocompatibility of
the functional multilayer on titanium surface constructed with type IV collagen and heparin. Colloid
Surface B 2013;108:295-304.
19 Sawa Y, Ohata T, Takagi M, Matsuda H. Hybrid artificial lung: current status and perspective. J
Artif Organs 1998;27:765-768.
20 Takagi M, Shiwaku K, Inoue T, Shirakawa Y, Sawa Y, Matsuda H, Yoshida T. Hydrodynamically
stable adhesion of endothelial cells onto a polypropylene hollow fiber membrane by modification
with adhesive protein. J Artif Organs 2003;6:222-226.
21 Dardik A, Liu A, Ballermann BJ. Chronic in vitro shear stress stimulates endothelial cell retention
on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. J Vasc Surg
1999;29:157-167.
22 Solouk A, Cousins BG, Mirzadeh H, Seifalian AM. Application of plasma surface modification
techniques to improve hemocompatibility of vascular grafts: A review. Biotechnol Appl Biochem 2011;58:311-327.
01