Page 281 - Microbial methane cycling in a warming world From biosphere to atmosphere Michiel H in t Zandt
P. 281

Edgar RC, Haas BJ, Clemente JC et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194–200.
Egger M, Hagens M, Sapart CJ et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim Cosmochim Acta 2017;207:256–76.
Egger M, Kraal P, Jilbert T et al. Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea. Biogeosciences 2016;13:5333–55.
Egger M, Rasigraf O, Sapart CJ et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 2015;49:277–83.
el-Mansi EM, Holms WH. Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. Microbiology 1989;135:2875–83.
Elberling B, Christiansen HH, Hansen BU. High nitrous oxide production from thawing permafrost. Nat Geosci 2010;3:332–5.
Elberling B, Michelsen A, Schädel C et al. Long-term CO2 production following permafrost thaw. Nat Clim Chang 2013;3:890–4.
EMODnet. Emodnet Bathymetry. 2018.
Enning D, Venzlaff H, Garrelfs J et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under
electroconductive biogenic mineral crust. Environ Microbiol 2012;14:1772–87.
EPA. Frequent questions about coal mine methane. United States Environ Prot Agency 2020.
Erkens G, van der Meulen MJ, Middelkoop H. Double trouble: Subsidence and CO2 respiration due to 1,000
years of Dutch coastal peatlands cultivation. Hydrogeol J 2016;24:551–68.
Esnault L, Jullien M, Mustin C et al. Metallic corrosion processes reactivation sustained by iron-reducing
bacteria: Implication on long-term stability of protective layers. Phys Chem Earth, Parts A/B/C
2011;36:1624–9.
Etheridge DM, Steele LP, Francey RJ et al. Atmospheric methane between 1000 A.D. and present: Evidence of
anthropogenic emissions and climatic variability. J Geophys Res Atmos 1998;103:15979–93.
Etiope G, Sherwood Lollar B. Abiotic methane on earth. Rev Geophys 2013;51:276–99.
Etminan M, Myhre G, Highwood EJ et al. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A
significant revision of the methane radiative forcing. Geophys Res Lett 2016;43:12,614-12,623. Ettwig KF, Butler MK, Le Paslier D et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.
Nature 2010;464:543–8.
Ettwig KF, Speth DR, Reimann J et al. Bacterial oxygen production in the dark. Front Microbiol 2012;3:1–8. Ettwig KF, Zhu B, Speth D et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl
Acad Sci U S A 2016;113:12792–6.
EUMETSAT. Climate services need to be developed to meet the challenge of mitigating and adapting to climate
change. 2020.
Evans PN, Parks DH, Chadwick GL et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed
by genome-centric metagenomics. Science 2015;350:434–8.
Ewing SA, O’Donnell JA, Aiken GR et al. Long-term anoxia and release of ancient, labile carbon upon thaw of
Pleistocene permafrost. Geophys Res Lett 2015;42:10730–8.
Faiz M, Hendry P. Significance of microbial activity in Australian coal bed methane reservoirs — a review. Bull Can Pet Geol 2006;54:261–72.
Fakoussa R, Hofrichter M. Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 1999;52:25–40.
R
 Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science 2008;320:1034–9.
Ferretti DF, Miller JB, White JWC et al. Atmospheric science: Unexpected changes to the global methane budget over the past 2000 years. Science 2005;309:1714–7.
Ferry JG. Methanosarcina acetivorans: A model for mechanistic understanding of aceticlastic and reverse methanogenesis. Front Microbiol 2020;11:1806.
Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology 2007;88:1354–64.
Fierer N, Craine JM, McLauchlan K et al. Litter quality and the temperature sensitivity of decomposition. Ecology 2005;86:320–6.
Finger RA, Turetsky MR, Kielland K et al. Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. J Ecol 2016;104:1542–54.
279



























































   279   280   281   282   283