Page 279 - Microbial methane cycling in a warming world From biosphere to atmosphere Michiel H in t Zandt
P. 279

Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 1996;60:609–40.
Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 1999;28:193–202.
Conrad R. Control of microbial methane production in wetland rice fields. Nutr Cycl Agroecosystems 2002;64:59–69.
Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 2009;1:285–92.
Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review. Pedosphere 2020a;30:25– 39.
Conrad R. Methane production in soil environments - anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020b;8:881.
Conrad R, Claus P, Chidthaisong A et al. Stable carbon isotope biogeochemistry of propionate and acetate in methanogenic soils and lake sediments. Org Geochem 2014;73:1–7.
Conrad R, Frenzel P, Cohen Y. Methane emission from hypersaline microbial mats: Lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 1995;16:297–305.
Coolen MJL, Orsi WD. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 2015;6:197.
Copernicus. Satellites component. 2020.
Crevecoeur S, Vincent WF, Comte J et al. Bacterial community structure across environmental gradients in
permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol 2015;6:1–15.
Crevecoeur S, Vincent WF, Comte J et al. Diversity and potential activity of methanotrophs in high methane-
emitting permafrost thaw ponds. PLoS One 2017;12:1–22.
Crevecoeur S, Vincent WF, Lovejoy C. Environmental selection of planktonic methanogens in permafrost thaw
ponds. Sci Rep 2016;6:1–10.
Crowe SA, Katsev S, Leslie K et al. The methane cycle in ferruginous Lake Matano. Geobiology 2011;9:61–78.
Dahllof I, Baillie H, Kjelleberg S. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 2000;66:3376–80.
Daims H, Bruhl A, Amann R et al. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 1999;444:434–44.
Dalcin Martins P, Danczak RE, Roux S et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome 2018;6:1–17.
Dan D, Zhang D-P, Liu W-C et al. Diversity analysis of bacterial community from permafrost soil of Mo-he in China. Indian J Microbiol 2014;54:111–3.
Daniels L. Biochemistry of methanogenesis. In: Kates M, Kushner DJ, Matheson A (eds.). The Biochemistry of Archaea (Archaebacteria). 1st edn. Elsevier Science, Amsterdam, 1993, 61.
Dao TT, Gentsch N, Mikutta R et al. Fate of carbohydrates and lignin in north-east Siberian permafrost soils. Soil Biol Biochem 2018;116:311–22.
Daquiado AR, Kuppusamy S, Kim SY et al. Pyrosequencing analysis of bacterial community diversity in long- term fertilized paddy field soil. Appl Soil Ecol 2016;108:84–91.
Daughton CG, Cook AM, Alexander M. Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites. Appl Environ Microbiol 1979;37:605–9.
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006;440:165–73.
R
 Day S, Dell’Amico M, Fry R et al. Field measurements of fugitive emissions from equipment and well casings in Australian coal seam gas production facilities. CSIRO, Aust 2014.
Dean JF, Middelburg JJ, Röckmann T et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys 2018;56:207–50.
Dedysh SN, Berestovskaya YY, Vasylieva L V et al. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 2004;54:151–6.
Dedysh SN, Knief C, Dunfield PF. Methylocella species are facultatively methanotrophic. J Bacteriol 2005;187:4665–70.
277



































































   277   278   279   280   281