Page 119 - Development of Functional Scaffolds for Bone Tissue Engineering Using 3D-Bioprinting of Cells and Biomaterials - Yasaman Zamani
P. 119
16. Piard CM, Chen Y, Fisher JP. Cell-laden 3D printed scaffolds for bone tissue engineering. Clinic Rev Bone Miner Metab 2015;13:245-255.
17. England S, Rajaram A, Schreyer DJ, Chen X. Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration. Bioprinting 2017;5:1-9.
18. Duarte CD, Blaeser A, Weber M, Jäkel J, Neuss S, Jahnen-Dechent W, Fischer H. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 2013;5:015003.
19. Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 2015;7:045012.
20. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering (Basel) 2018;5:55.
21. Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 2012;33:3279-3305.
22. Axpe E, Oyen M. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 2016;17:1976.
23. Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A 2017;105:1457-
1468.
24. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J. Bioprinting of hybrid tissue
constructs with tailorable mechanical properties. Biofabrication 2011;3:021001.
25. Detsch R, Sarker B, Grigore A, Boccaccini AR. Alginate and gelatine blending for bone cell printing and biofabrication. In: IASTED International Conference Biomedical Engineering Innsbruck. Austria: ACTA
Press 2013:451-455.
26. Gelinsky M. Biopolymer hydrogel bioinks. In: Thomas DJ, Jessop ZM, Whitaker IS (eds) 3D Bioprinting
for Reconstructive Surgery. Woodhead Publishing. 2018:125-136.
27. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear
stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc
Mater 2016;5:326-333.
28. Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P. Enhancing the
hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering.
Materials 2016;9:992-103.
29. Kroeze RJ, Knippenberg M, Helder MN. Osteogenic differentiation strategies for adipose-derived
mesenchymal stem cells. Methods Mol Biol 2011;702:233-248.
30. Zamani Y, Mohammadi J, Amoabediny G, Visscher DO, Helder MN, Zandieh-Doulabi B, Klein-Nulend J. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly (ε-
117