Page 118 - Development of Functional Scaffolds for Bone Tissue Engineering Using 3D-Bioprinting of Cells and Biomaterials - Yasaman Zamani
P. 118

REFERENCES
1. Buza III JA, Einhorn T. Bone healing in 2016. Clin Cases Miner Bone Metab 2016;13:101-105.
2. Marino JT, Ziran BH. Use of solid and cancellous autologous bone graft for fractures and nonunions.
Orthop Clin North Am 2010;41:15-26.
3. Nerem RM. Regenerative medicine: the emergence of an industry. J R Soc Interface 2010;7:S771- S775.
4. Arul KT, Manikandan E, Ladchumananandasivam R. Polymer-based calcium phosphate scaffolds for tissue engineering applications. In: Grumezescu AM (ed) Nanoarchitectonics in Biomedicine, William Andrew Publishing 2019:585-618.
5. Ramesh N, Moratti SC, Dias GJ. Hydroxyapatite-polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res B App Biomater 2018;106:2046-2057.
6. Yu NY, Schindeler A, Little DG, Ruys AJ. Biodegradable poly (α‐hydroxy acid) polymer scaffolds for bone tissue engineering. J Biomed Mater Res B App Biomater 2010;93:285-295.
7. Felfel R, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater 2016;11:015011.
8. Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012;2:366-377.
9. Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration. Polymers (Basel) 2017;9:189.
10. Yoshida T, Miyaji H, Otani K, Inoue K, Nakane K, Nishimura H, Ibara A, Shimada A, Ogawa K, Nishida E, Sugaya T, Sun L, Fugetsu B, Kawanami M. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. J Periodontal Res 2015;50:265-273.
11. Bizenjima T, Takeuchi T, Seshima F, Saito A. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta- tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate. Clin Oral Implants Res 2016;27:1360-1367.
12. Lee SK, Han CM, Park W, Kim IH, Joung YK, Han DK. Synergistically enhanced osteoconductivity and anti-inflammation of PLGA/β-TCP/Mg(OH)2 composite for orthopedic applications. Mater Sci Eng C Mater Biol Appl 2019;94:65-75.
13. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 2017;78:1246-1262.
14. Miar S, Shafiee A, Guda T, Narayan R. Additive manufacturing for tissue engineering. In: Ovsianikov A, Yoo J, Mironov V (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering. Springer, Cham. 2018:3-54.
15. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008;17:467-479.
116

















































































   116   117   118   119   120