Page 208 - Fluorescence-guided cancer surgery
P. 208

206
Appendices
REFERENTIES
1. Kelderhouse LE, Chelvam V, Wayua C et
al. Development of tumor-targeted near infrared probes for  uorescence guided 13. surgery. Bioconjug Chem 2013;24:1075-1080.
2. Altintas I, Kok RJ, Schi elers RM. Targeting epidermal growth factor receptor in tumors: from conventional monoclonal antibodies via heavy chain-only antibodies 14. to nanobodies. Eur J Pharm Sci 2012;45:399-
3. Choi HS, Gibbs SL, Lee JH et al. Targeted zwitterionic near-infrared  uorophores for improved optical imaging. Nat Biotechnol 15. 2013;31:148-153.
4. Oliveira S, Heukers R, Sornkom J, Kok RJ,
van Bergen En Henegouwen PM. Targeting tumors with nanobodies for cancer imaging 16. and therapy. J Control Release 2013;172:607-
modeling-a new classi cation of biomarkers. Pharm Res 2005;22:1432-1437.
Wittrup KD, Thurber GM, Schmidt MM, Rhoden JJ. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol 2012;503:255-268.
Kapiteijn E, Marijnen CA, Nagtegaal ID et al.
12. Snoeks TJ, van Driel PB, Keereweer S et al. Towards a successful clinical implementation of  uorescence-guided surgery. Mol Imaging Biol 2014;16:147-151.
J, Paintaud G. Mechanism-based 407. pharmacokinetic-pharmacodynamic
Preoperative radiotherapy combined with 617. total mesorectal excision for resectable
5. Rosenthal EL, Warram JM, de BE et al.
Safety and Tumor Speci city of Cetuximab- 17.
IRDye800 for Surgical Navigation in Head and
Neck Cancer. Clin Cancer Res 2015;21:3658-
3666. Syst Rev 2007;CD005002.
6. Zinn KR, Korb M, Samuel S et al. IND- 18. directed safety and biodistribution study of intravenously injected cetuximab-IRDye800
in cynomolgus macaques. Mol Imaging Biol 2015;17:49-57.
7. Chi C, Du Y, Ye J et al. Intraoperative imaging- 19. guided cancer surgery: from current  uorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 2014;4:1072-1084.
8. Bai J, Wang JT, Rubio N et al. Triple- 20. Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours In Vivo. Theranostics 2016;6:342-356.
9. Zhu B, Sevick-Muraca EM. A review of 21. performance of near-infrared  uorescence imaging devices used in clinical studies. Br J
Radiol 2015;88:20140547.
10. Pleijhuis R, Timmermans A, De JJ, de BE, Ntziachristos V, Van DG. Tissue-simulating phantoms for assessing potential near- infrared  uorescence imaging applications in breast cancer surgery. J Vis Exp 2014;51776.
11. Rosenthal EL, Warram JM, de BE et al. Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report. J Nucl Med 2016;57:144- 150.
Glynne-Jones R, Wallace M, Livingstone JI, Meyrick-Thomas J. Complete clinical response after preoperative chemoradiation in rectal cancer: is a “wait and see” policy justi ed? Dis Colon Rectum 2008;51:10-19.
Jin HL, Zhu H, Ling TS, Zhang HJ, Shi RH. Neoadjuvant chemoradiotherapy for resectable esophageal carcinoma: a meta- analysis. World J Gastroenterol 2009;15:5983- 5991.
O’Neill BD, Brown G, Heald RJ, Cunningham D, Tait DM. Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer. Lancet Oncol 2007;8:625-633.
Pozo ME, Fang SH. Watch and wait approach to rectal cancer: A review. World J Gastrointest Surg 2015;7:306-312.
Cohen A. Pharmacokinetic and pharmacodynamic data to be derived from early-phase drug development: designing informative human pharmacology studies. Clin Pharmacokinet 2008;47:373-381.
Danhof M, Alvan G, Dahl SG, Kuhlmann
rectal cancer. N Engl J Med 2001;345:638-646.
Mieog JS, van der Hage JA, van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database
22. Beets GL, Figueiredo NL, Habr-Gama A, van de Velde CJ. A new paradigm for rectal cancer: Organ preservation: Introducing the International Watch & Wait Database (IWWD). Eur J Surg Oncol 2015;41:1562-1564.


































































































   206   207   208   209   210