Page 95 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 95

28 A. Cipitria, A. Skelton, T. R. Dargaville, et al., Design, fabrication and characterization of PCL electrospun sca olds—a review, J. Mater. Chem., 2011, 21, 9419.
29 N. J. B. Driessen, A. Mol, C. V. C. Bouten, et al., Modeling the mechanics of tissue-engineered human heart valve leaflets, J. Biomech., 2007, 40, 325–334.
30 I. Levental, P. Georges and P. Janmey, So  biological materials and their impact on cell function, So  Matter, 2007, 3, 299.
31 D. E. Discher, Tissue Cells Feel and Respond to the Sti ness of Their Substrate, Science, 2005, 310, 1139–1143.
32 C. V. C. Bouten, P. Y. W. Dankers, A. Driessen-Mol, et al., Substrates for cardiovascular tissue engineering, Adv. Drug Deliv. Rev., 2011, 63, 221–241.
33 G. Schwach and M. Vert, In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction, Int. J. Biol. Macromol., 1999, 25, 283–291.
34 K. Kim, M. Yu, X. Zong, et al., Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber sca olds for biomedical applications, Biomaterials, 2003, 24, 4977–4985.
35 N. F. Huang, S. Patel, R. G. Thakar, et al., Myotube assembly on nanofibrous and micropatterned polymers, Nano Lett., 2006, 6, 537–542.
36 M. R. Williamson, E. F. Adams and G. A Coombes, Gravity spun polycaprolactone fibres for so  tissue engineering: Interaction with fibroblasts and myoblasts in cell culture, Biomaterials, 2006, 27, 1019–1026.
37 Z. Jun, H. Hou, A. Schaper, et al., Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology, e-Polymers, 2003, 9, 1–9.
38 T. Hildebrand and P. Rüegsegger, A new method for the model- independent assessment of thickness in three-dimensional images, J. Microsc., 1997, 185, 67–75.
39 Baumgart F., Sti ness — an unknown world of mechanical science?, Injury, 2000, 31, 14–84.
40 A. Mol, M. I. Van Lieshout, C. G. Dam-De Veen, et al., Fibrin as a cell carrier in cardiovascular tissue engineering applications, Biomaterials, 2005, 26, 3113–3121.
41 V. Milleret, M. Simonet, A. G. Bittermann, et al., Cyto- and hemocompatibility of a biodegradable 3D-sca old material designed for medical applications, J. Biomed. Mater. Res. - Part B Appl. Biomater., 2009, 91, 109–121.
42 S. Ramakrishna, K. Fujihara, W. E. Teo, et al., Electrospun nanofibers: Solving global issues, Mater. Today, 2006, 9, 40–50.
43 M. Stekelenburg, M. C. M. Rutten, L. H. E. H. Snoeckx, et al., 4
Dynamic Straining Combined with Fibrin Gel Cell Seeding Improves Strength of Tissue-Engineered Small-Diameter Vascular Gra s, Tissue Eng. Part A, 2009, 15, 1081–1089.
44 A. J. Engler, S. Sen, H. L. Sweeney, et al., Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, 2006, 126, 677–689.
45 M. S. Shoichet, Polymer Sca olds for Biomaterials Applications, Macromolecules, 2010, 43, 581–591.
TAILORING THE VOID SPACE AND MECHANICAL PROPERTIES IN ELECTROSPUN SCAFFOLDS
93


































































































   93   94   95   96   97