Page 94 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 94
CHAPTER 4
4.7 References
1 W. J. Li, C. T. Laurencin, E. J. Caterson, et al., Electrospun nanofibrous structure: A novel sca old for tissue engineering, J. Biomed. Mater. Res., 2002, 60, 613–621.
2 S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, et al.,
Electrospun degradable polyesterurethane membranes: potential sca olds for skeletal muscle tissue engineering, Biomaterials, 2005, 26, 4606–4615.
3 M. S. Khil, D. I. Cha, H. Y. Kim, et al., Electrospun nanofibrous polyurethane membrane as wound dressing., J. Biomed. Mater. Res. B. Appl. Biomater., 2003, 67, 675–679.
4 X. Zong, K. Kim, D. Fang, et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, 2002, 43, 4403–4412.
5 H. Fong, I. Chun and D. Reneker, Beaded nanofibers formed during electrospinning, Polymer, 1999, 40, 4585–4592.
6 M. Demir, I. Yilgor, E. Yilgor, et al., Electrospinning of polyurethane fibers, Polymer, 2002, 43, 3303–3309.
7 Z. Jun, H. Hou, A. Schaper, et al., Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology, e-Polymers, 2003, 9, 1–9.
8 L. Moroni, R. Licht, J. de Boer, et al., Fiber diameter and texture of electrospun PEOT/PBT sca olds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds, Biomaterials, 2006, 27, 4911–4922.
9 S. J. Eichhorn and W. W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies., J. R. Soc. Interface, 2005, 2, 309–318.
10 S. Kidoaki, I. K. Kwon and T. Matsuda, Structural features and mechanical properties of in situ-bonded meshes of segmented polyurethane electrospun from mixed solvents, J. Biomed. Mater. Res. Part B Appl. Biomater., 2006, 76, 219–229.
11 Q. P. Pham, U. Sharma and A. G. Mikos, Electrospun poly(e- caprolactone) microfiber and multilayer nanofiber/microfiber sca olds: Characterization of sca olds and measurement of cellular infiltration, Biomacromolecules, 2006, 7, 2796–2805.
12 A. Balguid, A. Mol, M. H. van Marion, et al., Tailoring Fiber Diameter in Electrospun Poly(ε-Caprolactone) Sca olds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering, Tissue Eng. Part A, 2009, 15, 437–444.
13 Y. Ikada, Challenges in tissue engineering, J. R. Soc. Interface, 2006, 3, 589–601.
14 J. Lannutti, D. Reneker, T. Ma, et al., Electrospinning for tissue engineering sca olds, Mater. Sci. Eng. C, 2007, 27, 504–509.
15 S. Yang, K. F. Leong, Z. Du, et al., The design of sca olds for use in tissue engineering. Part I. Traditional factors., Tissue Eng., 2001, 7, 679–689.
16 J. Zeltinger, J. K. Sherwood, D. a Graham, et al., E ect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue Eng, 2001, 7, 557–572.
17 R. Gentsch, B. Boysen, A. Lankenau, et al., Single-Step Electrospinning of Bimodal Fiber Meshes for Ease of Cellular Infiltration, Macromol. Rapid Commun., 2010, 31, 59–64.
18 S. Soliman, S. Pagliari, A. Rinaldi, et al., Multiscale three- dimensional sca olds for so tissue engineering via multimodal electrospinning, Acta Biomater., 2010, 6, 1227–1237.
19 A. Holzmeister, M. Rudisile, A. Greiner, et al., Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning, Eur. Polym. J., 2007, 43, 4859–4867.
20 J. Nam, Y. Huang, S. Agarwal, et al., Improved cellular infiltration in electrospun fiber via engineered porosity., Tissue Eng., 2007, 13, 2249–57.
21 L. Jin, T. Wang, Z. Q. Feng, et al., Fabrication and characterization of a novel flu y polypyrrole fibrous sca old designed for 3D cell culture, J. Mater. Chem., 2012, 22, 18321.
22 B. A. Blakeney, A. Tambralli, J. M. Anderson, et al., Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous sca old, Biomaterials, 2011, 32, 1583– 1590.
23 M. Simonet, O. D. Schneider, P. Neuenschwander, et al., Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template, Polym. Eng. Sci., 2007, 47, 2020–2026.
24 A. A. Bulysheva, G. L. Bowlin, A. J. Klingelhutz, et al., Low- temperature electrospun silk sca old for in vitro mucosal modeling., J. Biomed. Mater. Res. A, 2012, 100, 757–67.
25 J. Henry, K. Burugapalli, P. Neuenschwander, et al., Structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture, Acta Biomater., 2009, 5, 29–42.
26 M. F. Leong, M. Z. Rasheed, T. C. Lim, et al., In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) sca old fabricated by cryogenic electrospinning technique, J. Biomed. Mater. Res. - Part A, 2009, 91, 231–240.
27 O. D. Schneider, F. Weber, T. J. Brunner, et al., In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects, Acta Biomater., 2009, 5, 1775–1784.
92