Page 56 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 56
CHAPTER 2
29 M. Simonet, N. Stingelin, J. G. F. Wismans, et al., Tailoring the void space and mechanical properties in electrospun sca olds towards physiological ranges, J. Mater. Chem. B, 2014, 2, 305– 313.
30 A. Balguid, A. Mol, M. H. van Marion, et al., Tailoring Fiber Diameter in Electrospun Poly(ε-Caprolactone) Sca olds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering, Tissue Eng. Part A, 2009, 15, 437–444.
31 B. Sun, Y. Z. Long, H. D. Zhang, et al., Advances in three- dimensional nanofibrous macrostructures via electrospinning, Prog. Polym. Sci., 2014, 39, 862–890.
32 C. A. Bonino, K. Efimenko, S. I. Jeong, et al., Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions, Small, 2012, 8, 1928–1936.
33 G. Yan, J. Yu, Y. Qiu, et al., Self-assembly of electrospun polymer nanofibers: A general phenomenon generating honeycomb- patterned nanofibrous structures, Langmuir, 2011, 27, 4285– 4289.
34 B. Dhandayuthapani, Y. Yoshida, T. Maekawa, et al., Design, fabrication and characterization of PCL electrospun sca olds—a review, J. Mater. Chem., 2011, 93, 1539–1550.
35 B. W. Tillman, S. K. Yazdani, S. J. Lee, et al., The in vivo stability of electrospun polycaprolactone-collagen sca olds in vascular reconstruction, Biomaterials, 2009, 30, 583–588.
36 C. Del Gaudio, E. Ercolani, P. Galloni, et al., Aspirin-loaded electrospun poly(e-caprolactone) tubular sca olds: Potential small-diameter vascular gra s for thrombosis prevention, J. Mater. Sci. Mater. Med., 2013, 24, 523–532.
37 M. M. C. P. Brugmans, R. S. Soekhradj-Soechit, D. van Geemen, et al., Superior Tissue Evolution in Slow-Degrading Sca olds for Valvular Tissue Engineering, Tissue Eng. Part A, 2016, 22, 123– 132.
38 M. I. van Lieshout, C. M. Vaz, M. C. M. Rutten, et al., Electrospinning versus knitting: two sca olds for tissue engineering of the aortic valve., J. Biomater. Sci. Polym. Ed., 2006, 17, 77–89.
39 L. Klouda, C. M. Vaz, A. Mol, et al., E ect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL sca olds., J. Mater. Sci. Mater. Med., 2008, 19, 1137–44.
40 G. Larsen, R. Spretz and R. Velarde-Ortiz, Use of coaxial gas jackets to stabilize Taylor cones of volatile solutions and to induce particle-to-fiber transitions, Adv. Mater., 2004, 16, 166–169.
41 C. Ayres, G. L. Bowlin, S. C. Henderson, et al., Modulation of anisotropy in electrospun tissue-engineering sca olds: Analysis of fiber alignment by the fast Fourier transform, Biomaterials, 2006, 27, 5524–5534.
42 Z. Tang, C. Qiu, J. R. McCutcheon, et al., Design and fabrication of electrospun polyethersulfone nanofibrous sca old for high-flux nanofiltration membranes, J. Polym. Sci. Part B Polym. Phys., 2009, 47, 2288–2300.
43 I. M. Smallwood, Handbook of organic solvent properties, Wiley, New York, 1996.
44 M. M. Demir, Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF, eXPRESS Polym. Lett., 2010, 4, 2–8.
45 B. Sun, Y.-Z. Long, F. Yu, et al., Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning., Nanoscale, 2012, 4, 2134–7.
46 M. Yousefzadeh, M. Latifi, M. Amani-Tehran, et al., A Note on the 3D Structural Design of Electrospun Nanofibers, J. Eng. Fiber. Fabr., 2012, 7.
47 S. Cai, H. Xu, Q. Jiang, et al., Novel 3D electrospun sca olds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in so tissues: fabrication and mechanism study., Langmuir, 2013, 29, 2311–8.
48 T. C. Reis, I. J. Correia and A. Aguiar-Ricardo, Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs., Nanoscale, 2013, 5, 7528–36.
49 D. Ahirwal, A. Hébraud, R. Kádár, et al., From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams, So Matter, 2013, 9, 3164.
54