Page 55 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 55

2.7 References
1 S. Agarwal, A. Greiner and J. H. Wendor , Functional materials by 14 electrospinning of polymers, Prog. Polym. Sci., 2013, 38, 963–991.
2 A. J. Meinel, O. Germershaus, T. Luhmann, et al., Electrospun matrices for localized drug delivery: Current technologies and 15 selected biomedical applications, Eur. J. Pharm. Biopharm.,
2012, 81, 1–13.
3 L. S. Nair, S. Bhattacharyya and C. T. Laurencin, Development 16 of novel tissue engineering sca olds via electrospinning., Expert
Opin. Biol. Ther., 2004, 4, 659–68.
4 S. A. Theron, E. Zussman and A. L. Yarin, Experimental investigation of the governing parameters in the electrospinning 17 of polymer solutions, Polymer, 2004, 45, 2017–2030.
5 P. Gupta, C. Elkins, T. E. Long, et al., Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular 18 weight and concentration in a good solvent, Polymer, 2005, 46, 4799–4810.
6 C. J. Luo, M. Nangrejo and M. Edirisinghe, A novel method of 19 selecting solvents for polymer electrospinning, Polymer, 2010,
51, 1654–1662.
P. Lu and Y. Xia, Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity, Langmuir, 2013, 29, 7070–7078.
R. M. Nezarati, M. B. Eifert and E. Cosgri -Hernandez, E ects of
Humidity and Solution Viscosity on Electrospun Fiber Morphology, 2 Tissue Eng. Part C Methods, 2013, 19, 810–819.
H. Fashandi and M. Karimi, Comparative Studies on the Solvent Quality and Atmosphere Humidity for Electrospinning of Nanoporous Polyetherimide Fibers, Ind. Eng. Chem. Res., 2014, 53, 235–245.
J. Pelipenko, J. Kristl, B. Janković, et al., The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, Int. J. Pharm., 2013, 456, 125–134.
O. Hardick, B. Stevens and D. G. Bracewell, Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency, J. Mater. Sci., 2011, 46, 3890–3898.
G. Argento, M. Simonet, C. W. J. Oomens, et al., Multi-scale mechanical characterization of sca olds for heart valve tissue engineering, J. Biomech., 2012, 45, 2893–2898.
7 S. Megelski, J. S. Stephens, D. Bruce Chase, et al., Micro- and 20 nanostructured surface morphology on electrospun polymer fibers, Macromolecules, 2002, 35, 8456–8466.
8 C. L. Casper, J. S. Stephens, N. G. Tassi, et al., Controlling Surface Morphology of Electrospun Polystyrene Fibers: E ect of Humidity and Molecular Weight in the Electrospinning Process, Macromolecules, 2004, 37, 573–578.
9 G. T. Kim, J. S. Lee, J. H. Shin, et al., Investigation of pore formation for polystyrene electrospun fiber: E ect of relative humidity, Korean J. Chem. Eng., 2005, 22, 783–788.
10 L. Huang, N. N. Bui, S. S. Manickam, et al., Controlling electrospun nanofiber morphology and mechanical properties using humidity, J. Polym. Sci. Part B Polym. Phys., 2011, 49, 1734–1744.
11 C. L. Pai, M. C. Boyce and G. C. Rutledge, Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide, Macromolecules, 2009, 42, 2102–2114.
12 J. Lin, B. Ding and J. Yu, Direct Fabrication of Highly Nanoporous Polystyrene Fibers via Electrospinning, ACS Appl. Mater. Interfaces, 2010, 2, 521–528.
13 H. Fashandi and M. Karimi, Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere, Polymer, 2012, 53, 5832–5849.
ELECTROSPINNING POLY(Ε-CAPROLACTONE) UNDER CONTROLLED ENVIRONMENTAL CONDITIONS
D. Li and Y. Xia, Nano Lett., 2004, 4, 933–938.
21 A. Theron, E. Zussman and A. L. Yarin, Nanotechnology, 2001, 12,
384–390.
22 C. Xu, Aligned biodegradable nanofibrous structure: a potential sca old for blood vessel engineering, Biomaterials, 2004, 25, 877–886.
23 R. Inai, M. Kotaki and S. Ramakrishna, Nanotechnology, 2005, 16, 208–213.
24 L. Wannatong, A. Sirivat and P. Supaphol, E ects of solvents on electrospun polymeric fibers: Preliminary study on polystyrene, Polym. Int., 2004, 53, 1851–1859.
25 K. W. Kim, K. H. Lee, M. S. Khil, et al., The e ect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens, Fibers Polym., 2004, 5, 122–127.
26 J. A. Matthews, G. E. Wnek, D. G. Simpson, et al., Biomacromolecules, 2002, 3, 232–238.
27 W. E. Teo, M. Kotaki, X. M. Mo, et al., Porous tubular structures with controlled fibre orientation using a modified electrospinning method, Nanotechnology, 2005, 16, 918–924.
28 Z. Sun, J. M. Deitzel, J. Knopf, et al., The e ect of solvent dielectric properties on the collection of oriented electrospun fibers, J. Appl. Polym. Sci., 2012, 125, 2585–2594.
53


































































































   53   54   55   56   57