Page 109 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 109
PLASMA ELECTROLYTIC OXIDIZED MAGNESIUM ADVERSELY INFLUENCES VASCULAR CELLS TYPES BUT NOT MESENCHYMAL CELLS AND MONOCYTES
[30] W.R. Zhou, Y.F. Zheng, M. a Leeflang, J. Zhou, Mechanical property, biocorrosion and in vitro biocompatibility evalu- ations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application., Acta Biomater. 9 (2013) 8488–98. doi:10.1016/j. ac tbio.2013.01.032.
[31] L. Choudhary, R.K.S. Raman, Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment., Acta Biomater. 8 (2012) 916–23. doi:10.1016/j.actbio.2011.10.031.
[32] A.-C. Volz, B. Huber, P.J. Kluger, Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering, Differentiation. 92 (2016) 52–64.
[33] G. Bassi, L. Pacelli, R. Carusone, J. Zanoncello, M. Krampera, Adipose-derived stromal cells (ASCs), Transfus. Apher. Sci. 47 (2012) 193–198.
[34] A.F. Anvari-Yazdi, K. Tahermanesh, S.M.M. Hadavi, T. Talaei-Khozani, M. Razmkhah, S.M. Abed, M.S. Mohtasebi, Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys, Mater. Sci. Eng. C. 69 (2016) 584–597.
[35] B.J.C. Luthringer, R. Willumeit-Römer, Effects of magnesium degradation products on mesenchymal stem cell fate and osteoblastogenesis, Gene. 575 (2016) 9–20.
[36] Y. Yun, Z. Dong, D. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Z. Xu, P. Kumta, C. Sfeir, Biodegradable Mg corrosion and osteoblast cell culture studies, Mater. Sci. Eng. C. 29 (2009) 1814–1821.
[37] J. Zhang, S. Hiromoto, T. Yamazaki, H. Huang, G. Jia, H. Li, G. Yuan, Macrophage phagocytosis of biomedical Mg alloy degra- dation products prepared by electrochemical method, Mater. Sci. Eng. C. 75 (2017) 1178–1183.
[38] I. Roth, S. Schumacher, T. Basler, K. Baumert, J.-M. Seitz, F. Evertz, P.P. Müller, W. Bäumer, M. Kietzmann, Magnesium corro-
sion particles do not interfere with the immune function of primary human and murine macrophages, Prog. Biomater. 4 (2015) 6 21–30.
[39] F. Alvarez, R.M.L. Puerto, B. Pérez-Maceda, C.A. Grillo, M.F.L. de Mele, Time-Lapse Evaluation of Interactions Between Bio-
degradable Mg Particles and Cells, Microsc. Microanal. 22 (2016) 1–12.
[40] G. Hajmousa, A.A. Elorza, V.J.M. Nies, E.L. Jensen, R.A. Nagy, M.C. Harmsen, Hyperglycemia induces bioenergetic changes in
adipose-derived stromal cells while their pericytic function is retained, Stem Cells Dev. 25 (2016) 1444–1453.
[41] V. Terlizzi, M. Kolibabka, J.K. Burgess, H.P. Hammes, M.C. Harmsen, The Pericytic Phenotype of Adipose Tissue-Derived Stro-
mal Cells Is Promoted by NOTCH2, Stem Cells. 36 (2018) 240–251.
[42] M. Parvizi, A.H. Petersen, C. van Spreuwel-Goossens, S. Kluijtmans, M.C. Harmsen, Perivascular scaffolds loaded with adi-
pose tissue-derived stromal cells attenuate development and progression of abdominal aortic aneurysm in rats, J. Biomed. Ma-
ter. Res. Part A. (2018).
[43] M. Parvizi, L.A.M. Bolhuis-Versteeg, A.A. Poot, M.C. Harmsen, Efficient generation of smooth muscle cells from adipose-
derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering,
Biotechnol. J. 11 (2016) 932–944.
[44] C. Nie, D. Yang, S.F. Morris, Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new
promising strategy to accelerate wound healing, Med. Hypotheses. 72 (2009) 679–682.
[45] A.M. Altman, Y. Yan, N. Matthias, X. Bai, C. Rios, A.B. Mathur, Y.-H. Song, E.U. Alt, IFATS collection: human adipose-derived
stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model, Stem Cells. 27
(2009) 250–258.
[46] H.K. Cheung, T.T.Y. Han, D.M. Marecak, J.F. Watkins, B.G. Amsden, L.E. Flynn, Composite hydrogel scaffolds incorporating
decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells, Biomaterials. 35 (2014) 1914–1923.
[47] P.K. Bowen, A. Drelich, J. Drelich, J. Goldman, Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium, J.
Biomed. Mater. Res. Part A. 103 (2015) 341–349.
[48] N.I.Z. Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P.J. Uggowitzer, A. Atrens, The in vivo and in vitro corro-
sion of high-purity magnesium and magnesium alloys WZ21 and AZ91, Corros. Sci. 75 (2013) 354–366.
[49] P.K. Bowen, J. Drelich, J. Goldman, A new in vitro-in vivo correlation for bioabsorbable magnesium stents from
mechanical behavior., Mater. Sci. Eng. C. Mater. Biol. Appl. 33 (2013) 5064–70. doi:10.1016/j.msec.2013.08.042.
107