Page 108 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 108
CHAPTER 6
[6] S. Ramcharitar, P.W. Serruys, Fully Biodegradable Coronary Stents Progress to Date, 8 (2008) 305–314.
[7] P. Radke, Outcome after treatment of coronary in-stent restenosis Results from a systematic review using meta-analysis techniques, Eur. Heart J. 24 (2003) 266–273. doi:10.1016/S0195-668X(02)00202-6.
[8] K.E. Robertson, R. a McDonald, K.G. Oldroyd, S. a Nicklin, A.H. Baker, Prevention of coronary in-stent restenosis and vein graft failure: does vascular gene therapy have a role?, Pharmacol. Ther. 136 (2012) 23–34. doi:10.1016/j.pharmthera.2012.07.002. [9] S. Morlacchi, F. Migliavacca, Modeling stented coronary arteries: where we are, where to go., Ann. Biomed. Eng. 41 (2013) 1428–44. doi:10.1007/s10439-012-0681-6.
[10 I. Akin, H. Schneider, H. Ince, S. Kische, T.C. Rehders, T. Chatterjee, C. a Nienaber, Second- and third-generation drug-eluting coronary stents: progress and safety., Herz. 36 (2011) 190–6. doi:10.1007/s00059-011-3458-z.
[11] R.A. Partida, R.W. Yeh, Contemporary Drug-Eluting Stent Platforms: Design, Safety, and Clinical Efficacy, Interv. Cardiol. Clin. 5 (2016) 331–347.
[12] S. Pant, G. Limbert, N.P. Curzen, N.W. Bressloff, Multiobjective design optimisation of coronary stents., Biomaterials. 32 (2011) 7755–73. doi:10.1016/j.biomaterials.2011.07.059.
[13] J. Foerst, M. Vorpahl, M. Engelhardt, T. Koehler, K. Tiroch, R. Wessely, Evolution of Coronary Stents: From Bare-Metal Stents to Fully Biodegradable, Drug-Eluting Stents, Comb. Prod. Ther. 3 (2013) 9–24. doi:10.1007/s13556-013-0005-7.
[14] M.-C. Chen, C.-T. Liu, H.-W. Tsai, W.-Y. Lai, Y. Chang, H.-W. Sung, Mechanical properties, drug eluting characteristics and in vivo performance of a genipin-crosslinked chitosan polymeric stent, Biomaterials. 30 (2009) 5560–5571.
[15] C. Di Mario, H.U.W. Griffiths, O. Goktekin, N. Peeters, J.A.N. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kasese, others, Drug-eluting bioabsorbable magnesium stent, J. Interv. Cardiol. 17 (2004) 391–395.
[16] B. O’Brien, W. Carroll, The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review., Acta Biomater. 5 (2009) 945–58. doi:10.1016/j.actbio.2008.11.012.
[17] J. Jagur-Grodzinski, Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies, Polym. Adv. Technol. 17 (2006) 395–418.
[18] B.I.I.I.F.T. In, Element Concentrations Toxic to Plants , Animals , and Man, (n.d.).
[19] M. Shechter, A. Shechter, Magnesium in Human Health and Disease, (2013). doi:10.1007/978-1-62703-044-1.
[20] J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Höche, W.R. Heineman, F. Witte, Fast escape of hydro- gen from gas cavities around corroding magnesium implants, Acta Biomater. 9 (2013) 8714–8721.
[21] G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces, Corros. Sci. 70 (2013)
[22] A. Abdal-hay, M. Dewidar, J. Lim, J. Kyoo, Enhanced biocorrosion resistance of surface modi fi ed magnesium alloys using inorganic / organic composite layer for biomedical applications, 40 (2014) 2237–2247.
[23] W. Jin, G. Wu, H. Feng, W. Wang, X. Zhang, P.K. Chu, Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation, Corros. Sci. 94 (2015) 142–155. doi:10.1016/j.corsci.2015.01.049. [24] C. Lorenz, J.G. Brunner, P. Kollmannsberger, L. Jaafar, B. Fabry, S. Virtanen, Effect of surface pre-treatments on biocompat- ibility of magnesium., Acta Biomater. 5 (2009) 2783–9. doi:10.1016/j.actbio.2009.04.018.
[25] T.S.N. Sankara Narayanan, I.S. Park, M.H. Lee, Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges, Prog. Mater. Sci. 60 (2014) 1–71. doi:10.1016/j. pmatsci.2013.08.002.
[26] G.B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnes. Alloy. 5 (2017) 74–132.
[27] B.L. Jiang, Y.F. Ge, Micro-arc oxidation (MAO) to improve the corrosion resistance of magnesium (Mg) alloys, in: Corros. Prev. Magnes. Alloy., Elsevier, 2013: pp. 163–196.
[28] Y. Jang, Z. Tan, C. Jurey, B. Collins, A. Badve, Z. Dong, C. Park, C.S. Kim, J. Sankar, Y. Yun, Systematic understanding of corro- sion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant., Mater. Sci. Eng. C. Mater. Biol. Appl. 45 (2014) 45–55. doi:10.1016/j.msec.2014.08.052
[29] Y. Gao, A. Yerokhin, A. Matthews, Applied Surface Science Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings, Appl. Surf. Sci. 316 (2014) 558–567. doi:10.1016/j.apsusc.2014.08.035
106