Page 23 - Human Bile Acid Metabolism: a Postprandial Perspective
P. 23
Introduction
Li, T., & Chiang, J. Y. L. (2012). Bile Acid Signaling in Liver Metabolism and Diseases. Journal of Lipids, 1
2012, 1–9.
Maruyama, T., Miyamoto, Y., Nakamura, T., Tamai, Y., Okada, H., Sugiyama, E., Nakamura, T., Itadani, H., & Tanaka, K. (2002). Identification of membrane-type receptor for bile acids (M-BAR). Biochemical and Biophysical Research Communications, 298(5), 714–719.
Meessen, E. C. E., Warmbrunn, M. V., Nieuwdorp, M., & Soeters, M. R. (2019). Human postprandial nutrient metabolism and low-grade inflammation: A narrative review. Nutrients, 11(12), 3000.
Parks, D. J., Blanchard, S. G., Bledsoe, R. K., Chandra, G., Consler, T. G., Kliewer, S. A., Stimmel, J. B., Willson, T. M., Zavacki, A. M., Moore, D. D., & Lehmann, J. M. (1999). Bile Acids: Natural Ligands for an Orphan Nuclear Receptor . Science , 284(5418), 1365–1368.
Pols, T. W. H., Nomura, M., Harach, T., Lo Sasso, G., Oosterveer, M. H., Thomas, C., Rizzo, G., Gioiello, A., Adorini, L., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2011). TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metabolism, 14(6), 747–757.
Potthoff, M. J., Boney-Montoya, J., Choi, M., He, T., Sunny, N. E., Satapati, S., Suino-Powell, K., Xu, H. E., Gerard, R. D., Finck, B. N., Burgess, S. C., Mangelsdorf, D. J., & Kliewer, S. A. (2011). FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metabolism, 13(6), 729–738.
Renga, B., Mencarelli, A., Vavassori, P., Brancaleone, V., & Fiorucci, S. (2010). The bile acid sensor FXR regulates insulin transcription and secretion. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1802(3), 363–372.
Rizzo, G., Disante, M., Mencarelli, A., Renga, B., Gioiello, A., Pellicciari, R., & Fiorucci, S. (2006). The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Molecular Pharmacology, 70(4), 1164–1173.
Sato, H., Genet, C., Strehle, A., Thomas, C., Lobstein, A., Wagner, A., Mioskowski, C., Auwerx, J., & Saladin, R. (2007). Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochemical and Biophysical Research Communications, 362(4), 793–798.
Sato, H., Macchiarulo, A., Thomas, C., Gioiello, A., Une, M., Hofmann, A. F., Saladin, R., Schoonjans, K., Pellicciari, R., & Auwerx, J. (2008). Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. Journal of Medicinal Chemistry, 51(6), 1831–1841.
Schaap, F. G., Trauner, M., & Jansen, P. L. M. (2014). Bile acid receptors as targets for drug development. Nature Reviews Gastroenterology and Hepatology, 11(1), 55–67.
Schauer, P. R., Kashyap, S. R., Wolski, K., Brethauer, S. A., Kirwan, J. P., Pothier, C. E., Thomas, S., Abood, B., Nissen, S. E., & Bhatt, D. L. (2012). Bariatric surgery versus intensive medical therapy in obese patients with diabetes. New England Journal of Medicine, 366(17), 1567–1576.
Sips, F. L. P., Eggink, H. M., Hilbers, P. A. J., Soeters, M. R., Groen, A. K., & van Riel, N. A. W. (2018). In silico analysis identifies intestinal transit as a key determinant of systemic bile acid metabolism. Frontiers in Physiology, 9(JUN), 631.
Sonne, D. P., van Nierop, F. S., Kulik, W., Soeters, M. R., Vilsbøll, T., & Knop, F. K. (2016). Postprandial Plasma Concentrations of Individual Bile Acids and FGF-19 in Patients with Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101(August), jc.2016-1607.
Thomas, C., Auwerx, J., & Schoonjans, K. (2008). Bile acids and the membrane bile acid receptor TGR5- connecting nutrition and metabolism. Thyroid, 18(2).
Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism, 10(3), 167–177.
Tomlinson, E., Fu, L., John, L., Hultgren, B., Huang, X., Renz, M., Stephan, J. P., Tsai, S. P., Powell-braxton, L. Y. N., French, D., & Stewart, T. A. (2002). Transgenic Mice Expressing Human Fibroblast Growth Factor-19 Display Increased Metabolic Rate and Decreased Adiposity. Endocrinology, 143, 1741–1747.
Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. a, Kim, B. W., Sato, H., Messaddeq, N., Harney, J. W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A. C., & Auwerx, J. (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439(7075), 484–489.
Watanabe, M., Houten, S. M., Wang, L., Moschetta, A., Mangelsdorf, D. J., Heyman, R. A., Moore, D. D., & Auwerx, J. (2004). Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. Journal of Clinical Investigation, 113(10), 1408–1418.
21