Page 358 - Demo
P. 358
Chapter 1335639. Mishnaevsky L, Levashov E, Valiev RZ, Segurado J, Sabirov I, Enikeev N, et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater Sci Eng R Reports. 2014;81(1):1–19. 40. Singh R, Dahotre NB. Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med. 2007;18(5):725–51. 41. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications [Internet]. Vol. 47, Materials Science and Engineering R: Reports. 2004. p. 49–121. Available from: http://dx.doi.org/10.1016/j.mser.2014.10.00142. De Meurechy N, Mommaerts MY. Alloplastic temporomandibular joint replacement systems: A systematic review of their history. Int J Oral Maxillofac Surg [Internet]. 2018;47(6):743–54. Available from: https://doi.org/10.1016/j.ijom.2018.01.01443. Van Hove RP, Sierevelt IN, Van Royen BJ, Nolte PA. Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature. Biomed Res Int. 2015;2015. 44. Kerwell S, Alfaro M, Pourzal R, Lundberg HJJ, Liao Y, Sukotjo C, et al. Examination of failed retrieved temporomandibular joint (TMJ) implants. Acta Biomater [Internet]. 2016;32:324–35. Available from: http://linkinghub.elsevier.com/retrieve/pii/S174270611630001045. Ching HA, Choudhury D, Nine J, Abu Osman NA. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sience Technol Adv Mater. 2014;014402(15). 46. Jiang SW, Jiang B, Li Y, Li YR, Yin GF, Zheng CQ. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition. Appl Surf Sci. 2004;236(1):285–91. 47. Roy RK, Lee K-R. Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater. 2007 Oct;83(1):72–84. 48. Kim DH, Kim HE, Lee KR, Whang CN, Lee IS. Characterization of diamond-like carbon films deposited on commercially pure Ti and Ti-6Al-4V. Mater Sci Eng C. 2002;22(1):9–14. 49. Yetim AF, Celik A, Alsaran A. Improving tribological properties of Ti6Al4V alloy with duplex surface treatment. Surf Coatings Technol [Internet]. 2010;205(2):320–4. Available from: http://dx.doi.org/10.1016/j.surfcoat.2010.06.04850. Huys SEF, Braem A, De Meurechy N, Van de Sande R, Vander Sloten J, Mommaerts MY. Evolutionary Steps in the Development of a Patient-specific Temporomandibular Joint Prosthesis. Craniomaxillofacial Res Innov [Internet]. 2022 Aug 1;7:27528464221118784. Available from: https://doi.org/10.1177/2752846422111878451. Braem A, Van Mellaert L, Mattheys T, Hofmans D, De Waelheyns E, Geris L, et al. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A. 2014;102(1):215–24. 52. Wolford LM, Morales-Ryan CA, Morales PG, Cassano DS. Autologous fat grafts placed around temporomandibular joint prostheses to prevent heterotopic bone formation. Autologous Fat Transf. 2008;21(3):248–54. 53. Sidebottom AJ, Speculand B, Hensher R. Foreign body response around total prosthetic metal-on-metal replacements of the temporomandibular joint in the UK. Br J Oral Maxillofac Surg [Internet]. 2008;46(4):288–92. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L35163575354. Bracco P, Oral E. Vitamin E-stabilized UHMWPE for total joint implants: A review. Clin Orthop Relat Res. 2011;469(8):2286–93. 55. Wolford LM. Factors to consider in joint prosthesis systems. Proc (Bayl Univ Med Cent). 2006 Jul;19(3):232–8. 56. Mercuri LG, L.G. M. Alloplastic temporomandibular joint replacement: Rationale for the use of custom devices. Int J Oral Maxillofac Surg [Internet]. 2012 Sep;41(9):1033–40. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L5209654457. Kowalewski P, Wieleba W. Sliding polymers in the joint alloplastic. Arch Civ Mech Eng. 2007;7(4):107–19. Nikolas de Meurechy NW.indd 356 10-06-2024 11:12