Page 266 - Demo
P. 266
Chapter 926452. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater Sci Eng C [Internet]. 2016;59:690–701. Available from: https://www.sciencedirect.com/science/article/pii/S092849311530500253. Zhao L, Pei X, Jiang L, Hu C, Sun J, Xing F, et al. Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair. Compos Part B Eng [Internet]. 2019;162:154–61. Available from: https://www.sciencedirect.com/science/article/pii/S135983681832579454. Schneider G, Burridge K. Formation of focal adhesions by osteoblasts adhering to different substrata. Exp Cell Res. 1994 Sep;214(1):264–9. 55. Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res. 2001 Nov;57(2):258–67. 56. Jimbo R, Sawase T, Baba K, Kurogi T, Shibata Y, Atsuta M. Enhanced initial cell responses to chemically modified anodized titanium. Clin Implant Dent Relat Res. 2008 Mar;10(1):55–61. 57. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblastlike MG-63 cells. J Biomed Mater Res. 1996 Sep;32(1):55–63. 58. Foest R, Kindel E, Ohl A, Stieber M, Weltmann K-D. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys Control Fusion [Internet]. 2005;47(12B):B525–36. Available from: http://stacks.iop.org/0741-3335/47/B525/ppcf5_12B_S38.pdf LK - http://dx.doi.org/10.1088/0741-3335/47/12B/S3859. Zigterman BGR, Van den Borre C, Braem A, Mommaerts MY. Titanium surface modifications and their soft-tissue interface on nonkeratinized soft tissues-A systematic review (Review). Biointerphases. 2019 Aug;14(4):40802. 60. Chen GJ, Wang Z, Bai H, Li JM, Cai H. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants. Biomed Mater. 2009 Feb;4(1):15017. 61. Mutsuzaki H, Ito A, Sogo Y, Sakane M, Oyane A, Ochiai N. Enhanced wound healing associated with Sharpey’s fiber-like tissue formation around FGF-2-apatite composite layers on percutaneous titanium screws in rabbits. Arch Orthop Trauma Surg. 2012 Jan;132(1):113–21. 62. Mercuri LG, Saltzman BM. Acquired heterotopic ossification of the temporomandibular joint. Int J Oral Maxillofac Surg. 2017 Dec;46(12):1562–8. 63. Kan L, Kessler JA. Animal models of typical heterotopic ossification. J Biomed Biotechnol. 2011;2011:309287. 64. Cullen N, Perera J. Heterotopic Ossification: Pharmacologic Options. J Head Trauma Rehabil [Internet]. 2009;24(1). Available from: https://journals.lww.com/headtraumarehab/fulltext/2009/01000/heterotopic_ossification__pharmacologic_options.10.aspx65. Yin B, Xue B, Wu Z, Ma J, Wang K. A novel hybrid 3D-printed titanium scaffold for osteogenesis in a rabbit calvarial defect model. Am J Transl Res. 2018;10(2):474–82. 66. Imam MA, Holton J, Ernstbrunner L, Pepke W, Grubhofer F, Narvani A, et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop. 2017 Nov;41(11):2213–20. 67. Hsieh PC, Chung AS, Brodke D, Park J-B, Skelly AC, Brodt ED, et al. Autologous Stem Cells in Cervical Spine Fusion. Glob spine J. 2021 Jul;11(6):950–65. Nikolas de Meurechy NW.indd 264 05-06-2024 10:14