Page 317 - Personalised medicine of fluoropyrimidines using DPYD pharmacogenetics Carin Lunenburg
P. 317

16. Garcia-Gonzalez X, Cortejoso L, Garcia MI, et al. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget. 2015;6(8):6422-6430.
17. Joerger M, Huitema AD, Boot H, et al. Germline TYMS genotype is highly predictive in patients with metastatic gastrointestinal malignancies receiving capecitabine-based chemotherapy. Cancer Chemother Pharmacol. 2015;75(4):763-772.
18. Loganayagam A, Arenas HM, Corrigan A, et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer.  2013;108(12):2505-2515.
19. Roberto M, Romiti A, Botticelli A, et al. Evaluation of 5-fluorouracil degradation rate and Pharmacogenetic profiling to predict toxicity following adjuvant Capecitabine. Eur J Clin Pharmacol. 2017;73(2):157-164.
20. Thomas F, Motsinger-Reif AA, Hoskins JM, et al. Methylenetetrahydrofolate reductase genetic polymorphisms and toxicity to 5-FU-based chemoradiation in rectal cancer. Br  J  Cancer.  2011;105(11):1654-1662.
21. Jennings BA, Loke YK, Skinner J, et al. Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines. PloS one. 2013;8(10):e78053.
22. O’Donnell PH, Stark AL, Gamazon ER, et al. Identification of novel germline polymorphisms
governing capecitabine sensitivity. Cancer. 2012;118(16):4063-4073.
23. van Huis-Tanja LH, Ewing E, van der Straaten RJ, et al. Clinical validation study of genetic markers
for capecitabine efficacy in metastatic colorectal cancer patients. Pharmacogenet Genomics.
2015;25(6):279-288.
24. Fernandez-Rozadilla C, Cazier JB, Moreno V, et al. Pharmacogenomics in colorectal cancer: a
genome-wide association study to predict toxicity after 5-fluorouracil or FOLFOX administration.
Pharmacogenomics J. 2013;13(3):209-217.
25. Low SK, Chung S, Takahashi A, et al. Genome-wide association study of chemotherapeutic
agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci.
2013;104(8):1074-1082.
26. NCI. National Cancer Institute: Common Terminology Criteria for Adverse Events v4.03. https://
evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf, 5 May 2017.
27. Illumina I. Infinium® Global Screening Array-24 v1.0. 2017; http://glimdna.org/assets/2017-
infinium-global-screening-array-illumina-data-sheet.pdf. Accessed 15 Nov 2018.
28. R. Core Team. R: A Language and Environment for Statistical Computing. 2018; https://www.R-
project.org.
29. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575.
30. S P. 2018; http://pngu.mgh.harvard.edu/purcell/plink/.
31. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide
association studies by imputation of genotypes. Nat Genet. 2007;39(7):906-913.
32. NCBI. National Center for Biotechnology Information. ClinVar database https://www.ncbi.nlm.
nih.gov/clinvar/. Accessed 08 January 2019.
33. NCBI. National Center for Biotechnology Information. SNP database (dbSNP). https://www.ncbi.
nlm.nih.gov/snp/. Accessed 08 January 2019.
12
Genome-wide association study
 315
































































   315   316   317   318   319