Page 316 - Personalised medicine of fluoropyrimidines using DPYD pharmacogenetics Carin Lunenburg
P. 316
Chapter 12
References
1. Rosmarin D, Palles C, Pagnamenta A, et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut. 2015;64(1):111-120.
2. Saltz LB, Niedzwiecki D, Hollis D, et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol. 2007;25(23):3456-3461.
3. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med. 2000;343(13):905-914.
4. Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res. 1987;47(8):2203-2206.
5. Henricks LM, Lunenburg CATC, de Man FM, et al. DPYD genotype-guided dose individualisation
of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol.
2018;19(11):1459-1467.
6. Rosmarin D, Palles C, Church D, et al. Genetic markers of toxicity from capecitabine and other
fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-
analysis. J Clin Oncol. 2014;32(10):1031-1039.
7. Terrazzino S, Cargnin S, Del RM, Danesi R, Canonico PL, Genazzani AA. DPYD IVS14+1G>A and
2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-
analysis. Pharmacogenomics. 2013;14(11):1255-1272.
8. Deenen MJ, Tol J, Burylo AM, et al. Relationship between single nucleotide polymorphisms and
haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin
Cancer Res. 2011;17(10):3455-3468.
9. Meulendijks D, Henricks LM, Sonke GS, et al. Clinical relevance of DPYD variants c.1679T>G,
c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16(16):1639- 1650.
10. Morel A, Boisdron-Celle M, Fey L, et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther. 2006;5(11):2895-2904.
11. Schwab M, Zanger UM, Marx C, et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol. 2008;26(13):2131-2138.
12. Van Kuilenburg ABP, Meijer J, Mul ANPM, et al. Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum Genet. 2010;128(5):529-538.
13. Amstutz U, Farese S, Aebi S, Largiader CR. Dihydropyrimidine dehydrogenase gene variation and severe 5-fluorouracil toxicity: a haplotype assessment. Pharmacogenomics. 2009;10(6):931-944.
14. Hamzic S, Kummer D, Milesi S, et al. Novel Genetic Variants in Carboxylesterase 1 Predict Severe
Early-Onset Capecitabine-Related Toxicity. Clin Pharmacol Ther. 2017;102(5):796-804.
15. Pellicer M, Garcia-Gonzalez X, Garcia MI, et al. Identification of new SNPs associated with severe
toxicity to capecitabine. Pharmacol Res. 2017;120:133-137.
314