Page 22 - Physico-Chemical Niche Conditions for Bone Cells
P. 22

General introduction
20. Piekarski, K.; Munro, M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature 1977, 269, 80–82, doi:10.1038/269080a0.
21. Chen, B.; Ji, B.; Gao, H. Modeling active mechanosensing in cell–matrix interactions. Annu. Rev. Physiol. 2015, 44, 1–32.
22. Dalby, M.J.; Gadegaard, N.; Oreffo, R.O.C. Harnessing nanotopography and integrin– matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13, 558–569, doi:10.1038/nmat3980.
23. Petrie, R.J.; Doyle, A.D.; Yamada, K.M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 2009, 10, 538–549, doi:10.1038/nrm2729.
24. Charras, G.; Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 2014, 15, 813–824, doi:10.1038/nrm3897.
25. Guilak, F.; Cohen, D.M.; Estes, B.T.; Gimble, J.M.; Liedtke, W.; Chen, C.S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009, 5, 17–26, doi:10.1016/j.stem.2009.06.016.
26. Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689, doi:10.1016/j.cell.2006.06.044.
27. Crowder, S.W.; Leonardo, V.; Whittaker, T.; Papathanasiou, P.; Stevens, M.M. Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 2016, 18, 39–52, doi:10.1016/j.stem.2015.12.012.
28. Allori, A.C.; Sailon, A.M.; Warren, S.M. Biological basis of bone formation, remodeling, and repair—part II: Extracellular matrix. Tissue Eng. Part B Rev. 2008, 14, 275–283, doi:10.1089/ten.teb.2008.0083.
29. Allori, A.C.; Sailon, A.M.; Warren, S.M. Biological basis of bone formation, remodeling, and repair—Part I: biochemical signaling molecules. Tissue Eng. Part B Rev. 2008, 14, 259–273, doi:10.1089/ten.teb.2008.0082.
30. Uehara, N.; Kukita, A.; Kyumoto-Nakamura, Y.; Yamaza, T.; Yasuda, H.; Kukita, T. Osteoblast-derived Laminin-332 is a novel negative regulator of osteoclastogenesis in bone microenvironments. Lab. Investig. 2017, 97, 1235–1244, doi:10.1038/labinvest.2017.55.
31. Plow, E.F.; Haas, T.A.; Zhang, L.; Loftus, J.; Smith, J.W. Ligand binding to integrins. J. Biol. Chem. 2000, 275, 21785–21788, doi:10.1074/jbc.R000003200.
32. Schaffner, P.; Dard, M.M. Structure and function of RGD peptides involved in bone biology. Cell. Mol. Life Sci. 2003, 60, 119–132, doi:10.1007/s000180300008.
33. Buckwalter, J.A.; Glimcher, M.J.; Cooper, R.R.; Recker, R. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr. Course Lect. 1996, 45, 371–86.
34. Nie, Z.; Wang, X.; Ren, L.; Kang, Y. Development of a decellularized porcine bone matrix for potential applications in bone tissue regeneration. Regen. Med. 2020, 15, 1519–1534, doi:10.2217/rme-2019-0125.
35. Murshed, M.; Harmey, D.; Millán, L.J.; McKee, M.D.; Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 2005, 19, 1093–1104, doi:10.1101/gad.1276205.
36. Mark, K. von der; Park, J.; Bauer, S.; Schmuki, P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010, 339, 131–153.
37. Kantlehner, M.; Finsinger, D.; Meyer, J.; Schaffner, P.; Jonczyk, A.; Diefenbach, B.; Nies, B.; Kessler, H. Selective RGD-mediated adhesion of osteoblasts at surfaces of implants. Angew. Chemie Int. Ed. 1999, 38, 560–562, doi:10.1002/(SICI)1521- 3773(19990215)38:4<560::AID-ANIE560>3.0.CO;2-F.
38. Maheshwari, G.; Brown, G.; Lauffenburger, D.; Wells, A.; Griffith, L. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 2000, 113, 1677–1686.
39. Duncan, R.L.; Turner, C.H. Mechanotransduction and the functional response of bone
to mechanical strain. Calcif. Tissue Int. 1995, 57, 344–358, doi:10.1007/BF00302070.
40. Gusmão, C.V.B. de; Belangero, W.D. How do bone cells sense mechanical loading? Rev. Bras. Ortop. (English Ed. 2009, 44, 299–305, doi:10.1016/S2255-4971(15)30157-
9.
41. Wang, Y.; McNamara, L.M.; Schaffler, M.B.; Weinbaum, S. A model for the role of
20









































































   20   21   22   23   24