Page 21 - Physico-Chemical Niche Conditions for Bone Cells
P. 21

REFERENCES
1. Rodan, G.A. Therapeutic approaches to bone diseases. Science. 2000, 289, 1508– 1514, doi:10.1126/science.289.5484.1508.
2. Ralston, S.H. Bone structure and metabolism. Medicine (Baltimore). 2017, 45, 560– 564, doi:10.1016/j.mpmed.2017.06.008.
3. Frost, H.M. Changing concepts in skeletal physiology: Wolff’s Law, the Mechanostat, and the “Utah Paradigm.” Am. J. Hum. Biol. 1998, 10, 599–605, doi:10.1002/(SICI)1520-6300(1998)10:5<599::AID-AJHB6>3.0.CO;2-9.
4. Rodan, G.A. Bone mass homeostasis and bisphosphonate action. Bone 1997, 20, 1– 4, doi:10.1016/S8756-3282(96)00318-3.
5. Chang, M.; Chronopoulos, V.; Mattheos, N. Impact of excessive occlusal load on successfully-osseointegrated dental implants: a literature review. J. Investig. Clin. Dent. 2013, 4, 142–150, doi:10.1111/jicd.12036.
6. Thompson, W.R.; Rubin, C.T.; Rubin, J. Mechanical regulation of signaling pathways in bone. Gene 2012, 503, 179–193, doi:10.1016/j.gene.2012.04.076.
7. Tatsumi, S.; Ishii, K.; Amizuka, N.; Li, M.; Kobayashi, T.; Kohno, K.; Ito, M.; Takeshita, S.; Ikeda, K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007, 5, 464–475, doi:10.1016/j.cmet.2007.05.001.
8. Bonewald, L.F.; Johnson, M.L. Osteocytes, mechanosensing and Wnt signaling. Bone 2008, 42, 606–615, doi:10.1016/j.bone.2007.12.224.
9. Klein-Nulend, J.; van der Plas, A.; Semeins, C.M.; Ajubi, N.E.; Frangos, J.A.; Nijweide, P.J.; Burger, E.H. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995, 9, 441–5, doi:10.1096/fasebj.9.5.7896017.
10. Stavenschi, E.; Labour, M.-N.; Hoey, D.A. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. J. Biomech. 2017, 55, 99–106, doi:10.1016/j.jbiomech.2017.02.002.
11. Bacabac, R.G.; Smit, T.H.; Mullender, M.G.; Dijcks, S.J.; Van Loon, J.J.W..; Klein- Nulend, J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 2004, 315, 823–829, doi:10.1016/j.bbrc.2004.01.138.
12. Bacabac, R.G.; Smit, T.H.; Van Loon, J.J.W.A.; Doulabi, B.Z.; Helder, M.; Klein-Nulend, J. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 2006, 20, 858–864, doi:10.1096/fj.05-4966.com.
13. Xiong, J.; Onal, M.; Jilka, R.L.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A. Matrix- embedded cells control osteoclast formation. Nat. Med. 2011, 17, 1235–1241, doi:10.1038/nm.2448.
14. Rubin, J.; Murphy, T.; Nanes, M.S.; Fan, X. Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am. J. Physiol. Physiol. 2000, 278, C1126–C1132, doi:10.1152/ajpcell.2000.278.6.C1126.
15. Rubin, C.T.; Lanyon, L.E. Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 1985, 37, 411–417, doi:10.1007/BF02553711.
16. Goemaere, S.; Van Laere, M.; De Neve, P.; Kaufman, J.M. Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporos. Int. 1994, 4, 138– 143, doi:10.1007/BF01623058.
17. Rubin, C.T.; Lanyon, L.E. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J. Theor. Biol. 1984, 107, 321–327, doi:10.1016/S0022- 5193(84)80031-4.
18. Hemmatian, H.; Bakker, A.D.; Klein-Nulend, J.; van Lenthe, G.H. Aging, Osteocytes, and Mechanotransduction. Curr. Osteoporos. Rep. 2017, 15, 401–411, doi:10.1007/s11914-017-0402-z.
19. Dillaman, R.M.; Roer, R.D.; Gay, D.M. Fluid movement in bone: Theoretical and empirical. J. Biomech. 1991, 24, 163–177, doi:10.1016/0021-9290(91)90386-2.
Chapter 1
19
 1












































































   19   20   21   22   23