Page 132 - Physico-Chemical Niche Conditions for Bone Cells
P. 132
Regulation of bone cell mitochondrial structure and dynamics
20. Smoler, M.; Coceano, G.; Testa, I.; Bruno, L.; Levi, V. Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers. Biochim. Biophys. Acta - Mol. Cell Res. 2020, 1867, 118726, doi:10.1016/j.bbamcr.2020.118726.
21. Revenu, C.; Athman, R.; Robine, S.; Louvard, D. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 2004, 5, 635–646, doi:10.1038/nrm1437.
22. Kobielak, A.; Fuchs, E. α-catenin: at the junction of intercellular adhesion and actin dynamics. Nat. Rev. Mol. Cell Biol. 2004, 5, 614–625, doi:10.1038/nrm1433.
23. Engqvist-Goldstein, Å.E.Y.; Drubin, D.G. Actin assembly and endocytosis: From yeast to mammals. Annu. Rev. Cell Dev. Biol. 2003, 19, 287–332, doi:10.1146/annurev.cellbio.19.111401.093127.
24. Rafelski, S.M.; Theriot, J.A. Crawling toward a unified model of cell motility: Spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 2004, 73, 209–239, doi:10.1146/annurev.biochem.73.011303.073844.
25. Pruyne, D.; Legesse-Miller, A.; Gao, L.; Dong, Y.; Bretscher, A. Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell Dev. Biol. 2004, 20, 559–591, doi:10.1146/annurev.cellbio.20.010403.103108.
26. Boldogh, I.R.; Pon, L.A. Interactions of mitochondria with the actin cytoskeleton. Biochim. Biophys. Acta - Mol. Cell Res. 2006, 1763, 450–462, doi:10.1016/j.bbamcr.2006.02.014.
27. Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature 1984, 312, 237–242, doi:10.1038/312237a0.
28. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 2003, 112, 467– 480, doi:10.1016/S0092-8674(03)00111-9.
29. Oelz, D.B.; del Castillo, U.; Gelfand, V.I.; Mogilner, A. Microtubule dynamics, kinesin-1 sliding, and dynein action drive growth of cell processes. Biophys. J. 2018, 115, 1614– 1624, doi:10.1016/j.bpj.2018.08.046.
30. Ligon, L.A.; Steward, O. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J. Comp. Neurol. 2000, 427, 351–361, doi:10.1002/1096-9861(20001120)427:3<351::AID- CNE3>3.0.CO;2-R.
31. Anesti, V.; Scorrano, L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta - Bioenerg. 2006, 1757, 692–699, doi:10.1016/j.bbabio.2006.04.013.
32. Tang, H.L.; Lung, H.L.; Wu, K.C.; Le, A.-H.P.; Tang, H.M.; Fung, M.C. Vimentin supports mitochondrial morphology and organization. Biochem. J. 2008, 410, 141–146, doi:10.1042/BJ20071072.
33. Mendez, M.G.; Restle, D.; Janmey, P.A. Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys. J. 2014, 107, 314–323, doi:10.1016/j.bpj.2014.04.050.
34. Reipert, S. Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp. Cell Res. 1999, 252, 479–491, doi:10.1006/excr.1999.4626.
35. Klein-Nulend, J.; van der Plas, A.; Semeins, C.M.; Ajubi, N.E.; Frangos, J.A.; Nijweide, P.J.; Burger, E.H. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995, 9, 441–5, doi:10.1096/fasebj.9.5.7896017.
36. Tinevez, J.-Y.; Perry, N.; Schindelin, J.; Hoopes, G.M.; Reynolds, G.D.; Laplantine, E.; Bednarek, S.Y.; Shorte, S.L.; Eliceiri, K.W. TrackMate: An open and extensible platform for single-particle tracking. Methods 2017, 115, 80–90, doi:10.1016/j.ymeth.2016.09.016.
37. Valente, A.J.; Maddalena, L.A.; Robb, E.L.; Moradi, F.; Stuart, J.A. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem. 2017, 119, 315–326, doi:10.1016/j.acthis.2017.03.001.
38. Onaizah, O.; Xu, L.; Middleton, K.; You, L.; Diller, E. Local stimulation of osteocytes using a magnetically actuated oscillating beam. PLoS One 2020, 15, e0235366,
130